413 research outputs found

    A predictive analytics model for differentiating between transient ischemic attacks (TIA) and its mimics

    Get PDF
    Transient ischemic attack (TIA) is a brief episode of neurological dysfunction resulting from cerebral ischemia not associated with permanent cerebral infarction. TIA is associated with high diagnostic errors because of the subjective nature of findings and the lack of clinical and imaging biomarkers. The goal of this study was to design and evaluate a novel multinomial classification model, based on a combination of feature selection mechanisms coupled with logistic regression, to predict the likelihood of TIA, TIA mimics, and minor stroke

    Verification of Unstructured Grid Adaptation Components

    Get PDF
    Adaptive unstructured grid techniques have made limited impact on production analysis workflows where the control of discretization error is critical to obtaining reliable simulation results. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic grid adaptation mechanics. Known differences and previously unknown differences in grid adaptation components and their integrated processes are identified here for study. Unstructured grid adaptation tools are verified using analytic functions and the Code Comparison Principle. Three analytic functions with different smoothness properties are adapted to show the impact of smoothness on implementation differences. A scalar advection-diffusion problem with an analytic solution that models a boundary layer is adapted to test individual grid adaptation components. Laminar flow over a delta wing and turbulent flow over an ONERA M6 wing are verified with multiple, independent grid adaptation procedures to show consistent convergence to fine-grid forces and a moment. The scalar problems illustrate known differences in a grid adaptation component implementation and a previously unknown interaction between components. The wing adaptation cases in the current study document a clear improvement to existing grid adaptation procedures. The stage is set for the infusion of verified grid adaptation into production fluid flow simulations

    Determination of the Cosmic Distance Scale from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High Redshift Galaxy Clusters

    Full text link
    We determine the distance to 38 clusters of galaxies in the redshift range 0.14 < z < 0.89 using X-ray data from Chandra and Sunyaev-Zeldovich Effect data from the Owens Valley Radio Observatory and the Berkeley-Illinois-Maryland Association interferometric arrays. The cluster plasma and dark matter distributions are analyzed using a hydrostatic equilibrium model that accounts for radial variations in density, temperature and abundance, and the statistical and systematic errors of this method are quantified. The analysis is performed via a Markov chain Monte Carlo technique that provides simultaneous estimation of all model parameters. We measure a Hubble constant of 76.9 +3.9-3.4 +10.0-8.0 km/s/Mpc (statistical followed by systematic uncertainty at 68% confidence) for an Omega_M=0.3, Omega_Lambda=0.7 cosmology. We also analyze the data using an isothermal beta model that does not invoke the hydrostatic equilibrium assumption, and find H_0=73.7 +4.6-3.8 +9.5-7.6 km/s/Mpc; to avoid effects from cool cores in clusters, we repeated this analysis excluding the central 100 kpc from the X-ray data, and find H_0=77.6 +4.8-4.3 +10.1-8.2 km/s/Mpc. The consistency between the models illustrates the relative insensitivity of SZE/X-ray determinations of H_0 to the details of the cluster model. Our determination of the Hubble parameter in the distant universe agrees with the recent measurement from the Hubble Space Telescope key project that probes the nearby universe.Comment: ApJ submitted (revised version

    X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters

    Get PDF
    We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel'dovich Effect measurements. We use three models for the gas distribution: (1) an isothermal beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data,(2) a non-isothermal double beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core in clusters with a wide range of morphological properties. The X-ray and SZE determinations of mean gas mass fractions for the 100 kpc-cut isothermal beta-model are fgas(X-ray)=0.110 +0.003-0.003 +0.006-0.018 and fgas(SZE)=0.116 +0.005-0.005 +0.009-0.026, where uncertainties are statistical followed by systematic at 68% confidence. For the non-isothermal double beta-model, fgas(X-ray)=0.119 +0.003-0.003 +0.007-0.014 and fgas(SZE)=0.121 +0.005-0.005 +0.009-0.016. For the SZE-only model, fgas(SZE)=0.120 +0.009-0.009 +0.009-0.027. Our results indicate that the ratio of the gas mass fraction within r2500 to the cosmic baryon fraction is 0.68 +0.10-0.16 where the range includes statistical and systematic uncertainties. By assuming that cluster gas mass fractions are independent of redshift, we find that the results are in agreement with standard LambdaCDM cosmology and are inconsistent with a flat matter dominated universe.Comment: ApJ, submitted. 47 pages, 5 figures, 8 table

    Verification of Unstructured Grid Adaptation Components

    Get PDF
    Adaptive unstructured grid techniques have made limited impact on production analysis workflows where the control of discretization error is critical to obtaining reliable simulation results. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic grid adaptation mechanics. Known differences and previously unknown differences in grid adaptation components and their integrated processes are identified here for study. Unstructured grid adaptation tools are verified using analytic functions and the Code Comparison Principle. Three analytic functions with different smoothness properties are adapted to show the impact of smoothness on implementation differences. A scalar advection-diffusion problem with an analytic solution that models a boundary layer is adapted to test individual grid adaptation components. The scalar problems illustrate known differences in a grid adaptation component implementation and a previously unknown interaction between components. Laminar flow over a delta wing is verified with multiple, independent grid adaptation procedures to show consistent convergence to fine-grid forces and pitching moment
    corecore