2,020 research outputs found

    Increased Perceived Stress is Associated with Blunted Hedonic Capacity: Potential Implications for Depression Research

    Get PDF
    Preclinical studies suggest that stress exerts depressogenic effects by impairing hedonic capacity, in humans, however, the precise mechanisms linking stress and depression are largely unknown. As an initial step towards better understanding the association between stress and anhedonia, the present study tested, in two independent samples, whether individuals reporting elevated stress exhibit decreased hedonic capacity. The Perceived Stress Scale (PSS) measured the decree to which participants appraised their daily life as unpredictable, uncontrollable, and overwhelming. Hedonic capacity was objectively assessed using a signal-detection task based on a differential reinforcement schedule. Decreased reward responsiveness (i.e., the participants propensity to modulate behavior as a function of reward) was used as an operational measure of hedonic capacity. In both Study 1 (n = 88) and Study 2 (n = 80), participants with high PSS scores displayed blunted reward responsiveness and reported elevated anhedonic symptoms. Additionally, PSS scores predicted reduced reward responsiveness even after controlling for general distress and anxiety symptoms. These findings are consistent with preclinical data highlighting links between stress and anhedonia, and offer promising insights into potential mechanisms linking stress to depression.Psycholog

    Emigration of hatchery‐reared Pallid Sturgeon, Scaphirhynchus albus (Forbes and Richardson), through a Missouri River dam

    Get PDF
    The middle Missouri River (MMR; Fort Randall Dam, SD to Gavins Point Dam, NE‐SD) is stocked with hatchery‐reared pallid sturgeon, Scaphirhynchus albus (Forbes and Richardson), from upper Missouri River broodstock to aid recovery of this federally endangered species. Emigration of these fish through Gavins Point Dam restores genetic connectivity that likely existed pre‐impoundment but could lead to outbreeding depression in the future. Recapture data of hatchery‐reared pallid sturgeon stocked in the MMR were evaluated to improve understanding of pallid sturgeon emigration. From 2004 to 2015, 219 emigrants were caught: 4 stocked at age ≄2 years and 215 stocked at age ≀1 year. Emigration of the 2001‐2007 year classes stocked at age 1 was a consistent phenomenon and appeared higher than emigration of year classes stocked at ages 2–3. Little evidence suggested emigration was associated with an unusually high‐water event in 2011. The annual emigration probability of individuals stocked at age 1 estimated from multi‐state mark–recapture models was 0.05 [95% confidence interval = 0.04–0.06] for fish ages ≄1 year. This study suggests that alterations to stocking practices (e.g. stocking age) may affect emigration rates and, therefore, connectivity among pallid sturgeon populations

    Draft genome sequences of six strains isolated from the InSight spacecraft and associated surfaces using Oxford Nanopore- and Illumina-based sequencing

    Get PDF
    Whole-genome sequencing and annotation have allowed planetary protection engineers to assess the functional capabilities of microorganisms isolated from spacecraft hardware and associated surfaces. Here, we report draft genomes of six strains isolated from the InSight mission, determined using Oxford Nanopore- and Illumina-based sequencing.https://journals.asm.org/doi/full/10.1128/MRA.01161-19Published versio

    Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR

    Get PDF
    The influenza M2 protein not only forms a proton channel but also mediates membrane scission in a cholesterol-dependent manner to cause virus budding and release. The atomic interaction of cholesterol with M2, as with most eukaryotic membrane proteins, has long been elusive. We have now determined the cholesterol-binding site of the M2 protein in phospholipid bilayers using solid-state NMR spectroscopy. Chain-fluorinated cholesterol was used to measure cholesterol proximity to M2 while sterol-deuterated cholesterol was used to measure bound-cholesterol orientation in lipid bilayers. Carbon–fluorine distance measurements show that at a cholesterol concentration of 17 mol%, two cholesterol molecules bind each M2 tetramer. Cholesterol binds the C-terminal transmembrane (TM) residues, near an amphipathic helix, without requiring a cholesterol recognition sequence motif. Deuterium NMR spectra indicate that bound cholesterol is approximately parallel to the bilayer normal, with the rough face of the sterol rings apposed to methyl-rich TM residues. The distance- and orientation-restrained cholesterol-binding site structure shows that cholesterol is stabilized by hydrophobic interactions with the TM helix and polar and aromatic interactions with neighboring amphipathic helices. At the 1:2 binding stoichiometry, lipid31P spectra show an isotropic peak indicative of high membrane curvature. This M2–cholesterol complex structure, together with previously observed M2 localization at phase boundaries, suggests that cholesterol mediates M2 clustering to the neck of the budding virus to cause the necessary curvature for membrane scission. The solid-state NMR approach developed here is generally applicable for elucidating the structural basis of cholesterol’s effects on membrane protein function. Keywords: membrane; ÂčâčF-NMR; deuterium NMR; docking; membrane scissio

    Limited heat tolerance in a cold-adapted seabird: Implications of a warming Arctic

    Get PDF
    The Arctic is warming at approximately twice the global rate, with welldocumented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs.We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a coldadapted bird, murres\u27 limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change

    Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition

    Get PDF
    The canonical Wnt signaling pathway is critical for skeletal development and maintenance, but the precise roles of the individual Wnt co-receptors, Lrp5 and Lrp6, that enable Wnt signals to be transmitted in osteoblasts remain controversial. In these studies, we used Cre-loxP recombination, in which Cre-expression is driven by the human osteocalcin promoter, to determine the individual contributions of Lrp5 and Lrp6 in postnatal bone acquisition and osteoblast function. Mice selectively lacking either Lrp5 or Lrp6 in mature osteoblasts were born at the expected Mendelian frequency but demonstrated significant reductions in whole-body bone mineral density. Bone architecture measured by microCT revealed that Lrp6 mutant mice failed to accumulate normal amounts of trabecular bone. By contrast, Lrp5 mutants had normal trabecular bone volume at 8 weeks of age, but with age, these mice also exhibited trabecular bone loss. Both mutants also exhibited significant alterations in cortical bone structure. In vitro differentiation was impaired in both Lrp5 and Lrp6 null osteoblasts as indexed by alkaline phosphatase and Alizarin red staining, but the defect was more pronounced in Lrp6 mutant cells. Mice lacking both Wnt co-receptors developed severe osteopenia similar to that observed previously in mice lacking ÎČ-catenin in osteoblasts. Likewise, calvarial cells doubly deficient for Lrp5 and Lrp6 failed to form osteoblasts when cultured in osteogenic media, but instead attained a chondrocyte-like phenotype. These results indicate that expression of both Lrp5 and Lrp6 are required within mature osteoblasts for normal postnatal bone development
    • 

    corecore