7 research outputs found

    A cautionary note: Toxicity of polyethylene glycol 200 injected intraperitoneally into mice

    Get PDF
    The parenteral administration of hydrophobic substances in vivo requires the use of organic solvents to ensure sufficient solubility and avoid precipitation. Dimethyl sulfoxide is commonly used for this purpose. Based on the common assumption that polyethylene glycol (PEG) is non-toxic, our local regulatory authorities recently recommended the use of PEG instead. However, mice injected intraperitoneally (i.p.) with PEG 200 at a dose of 8 mL/kg (i.e. 9 g/kg) did not tolerate PEG 200 well, and half of the animals had to be euthanized. Our results demonstrate that although PEG 200 is generally considered to be harmless, it can be toxic when injected i.p. and is painful for the recipient mice. Nevertheless, it can be used as a solvent for repeated i.p. injections in mice at a dose of 2 mL/kg (i.e. 2.25 g/kg) without obvious signs of systemic toxicity

    Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells

    Get PDF
    Abstract BMP4/7-dependent expression of inhibitor of differentiation/DNA binding (Id) proteins 1 and 3 has been implicated in tumor progression and poor prognosis of malignant melanoma patients. Hyaluronic acid (HA), a pericellular matrix component, supports BMP7 signalling in murine chondrocytes through its receptor CD44. However, its role in regulating BMP signalling in melanoma is not clear. In this study we found that depletion of endogenously-produced HA by hyaluronidase treatment or by inhibition of HA synthesis by 4-methylumbelliferone (4-MU) resulted in reduced BMP4/7-dependent Id1/3 protein expression in mouse melanoma B16-F10 and Ret cells. Conversely, exogenous HA treatment increased BMP4/7-dependent Id1/3 protein expression. Knockdown of CD44 reduced BMP4/7-dependent Id1/3 protein expression, and attenuated the ability of exogenous HA to stimulate Id1 and Id3 expression in response to BMP. Co-IP experiments demonstrated that CD44 can physically associate with the BMP type II receptor (BMPR) ACVR2B. Importantly, we found that coordinate expression of Id1 or Id3 with HA synthases HAS2, HAS3, and CD44 is associated with reduced overall survival of cutaneous melanoma patients. Our results suggest that HA-CD44 interactions with BMPR promote BMP4/7-dependent Id1/3 protein expression in melanoma, contributing to reduced survival in melanoma patients

    Human innate immune cell crosstalk induces melanoma cell senescence

    Get PDF
    Mononuclear phagocytes and NK cells constitute the first line of innate immune defense. How these cells interact and join forces against cancer is incompletely understood. Here, we observed an early accumulation of slan+^{+} (6-sulfo LacNAc) non-classical monocytes (slanMo) in stage I melanoma, which was followed by an increase in NK cell numbers in stage III. Accordingly, culture supernatants of slanMo induced migration of primary human NK cells in vitro via the chemotactic cytokine IL-8 (CXCL8), suggesting a role for slanMo in NK cell recruitment into cancer tissues. High levels of TNF-α and IFN-γ were produced in co-cultures of TLR-ligand stimulated slanMo and NK cells, whereas much lower levels were contained in cultures of slanMo and NK cells alone. Moreover, TNF-α and IFN-γ concentrations in slanMo/NK cell co-cultures exceeded those in CD14+^{+} monocyte/NK cell and slanMo/T cell co-cultures. Importantly, TNF-α and IFN-γ that was produced in TLR-ligand stimulated slanMo/NK cell co-cultures induced senescence in different melanoma cell lines, as indicated by reduced melanoma cell proliferation, increased senescence-associated β-galactosidase expression, p21 upregulation, and induction of a senescence-associated secretory phenotype (SASP). Taken together, we identified a role for slanMo and NK cells in a collaborative innate immune defense against melanoma by generating a tumor senescence-inducing microenvironment. We conclude that enhancing the synergistic innate immune crosstalk of slanMo and NK cells could improve current immunotherapeutic approaches in melanoma

    Quantitative Detection of Disseminated Melanoma Cells by Trp-1 Transcript Analysis Reveals Stochastic Distribution of Pulmonary Metastases

    No full text
    A better understanding of the process of melanoma metastasis is required to underpin the development of novel therapies that will improve patient outcomes. The use of appropriate animal models is indispensable for investigating the mechanisms of melanoma metastasis. However, reliable and practicable quantification of metastases in experimental mice remains a challenge, particularly if the metastatic burden is low. Here, we describe a qRT-PCR-based protocol that employs the melanocytic marker Trp-1 for the sensitive quantification of melanoma metastases in the murine lung. Using this protocol, we were able to detect the presence of as few as 100 disseminated melanoma cells in lung tissue. This allowed us to quantify metastatic burden in a spontaneous syngeneic B16-F10 metastasis model, even in the absence of visible metastases, as well as in the autochthonous Tg(Grm1)/Cyld−/− melanoma model. Importantly, we also observed an uneven distribution of disseminated melanoma cells amongst the five lobes of the murine lung, which varied considerably from animal to animal. Together, our findings demonstrate that the qRT-PCR-based detection of Trp-1 allows the quantification of low pulmonary metastatic burden in both transplantable and autochthonous murine melanoma models, and show that the analysis of lung metastasis in such models needs to take into account the stochastic distribution of metastatic lesions amongst the lung lobes

    Human innate immune cell crosstalk induces melanoma cell senescence

    Get PDF
    Mononuclear phagocytes and NK cells constitute the first line of innate immune defense. How these cells interact and join forces against cancer is incompletely understood. Here, we observed an early accumulation of slan+ (6-sulfo LacNAc) non-classical monocytes (slanMo) in stage I melanoma, which was followed by an increase in NK cell numbers in stage III. Accordingly, culture supernatants of slanMo induced migration of primary human NK cells in vitro via the chemotactic cytokine IL-8 (CXCL8), suggesting a role for slanMo in NK cell recruitment into cancer tissues. High levels of TNF-α and IFN-γ were produced in co-cultures of TLR-ligand stimulated slanMo and NK cells, whereas much lower levels were contained in cultures of slanMo and NK cells alone. Moreover, TNF-α and IFN-γ concentrations in slanMo/NK cell co-cultures exceeded those in CD14+ monocyte/NK cell and slanMo/T cell co-cultures. Importantly, TNF-α and IFN-γ that was produced in TLR-ligand stimulated slanMo/NK cell co-cultures induced senescence in different melanoma cell lines, as indicated by reduced melanoma cell proliferation, increased senescence-associated β-galactosidase expression, p21 upregulation, and induction of a senescence-associated secretory phenotype (SASP). Taken together, we identified a role for slanMo and NK cells in a collaborative innate immune defense against melanoma by generating a tumor senescence-inducing microenvironment. We conclude that enhancing the synergistic innate immune crosstalk of slanMo and NK cells could improve current immunotherapeutic approaches in melanoma

    Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide

    No full text
    Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs’ properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)­trimethylammonium bromide (MTAB), <sup>MTAB</sup>GNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of <sup>MTAB</sup>GNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, <sup>MTAB</sup>GNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of <sup>MTAB</sup>GNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed <sup>MTAB</sup>GNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach
    corecore