82 research outputs found

    CD4+ T cells from MHC II-dependent thymocyte–thymocyte interaction provide efficient help for B cells

    Get PDF
    Recently, a novel CD4+ T-cell developmental pathway was reported that generates thymocyte–thymocyte (T–T) CD4+ T cells. We established a mouse system (CIITAtgCIITApIV−/−) where thymic positive selection occurred only by major histocompatibility complex (MHC) class II+ thymocytes. T–T CD4+ T cells selected via MHC class II-dependent T–T interaction are comprised of PLZF-negative and innate PLZF-positive populations. Until recently, the functional role of the PLZF-negative population was unclear. In this study, we demonstrate that naïve T–T CD4+ T cells provide B-cell help to a level comparable with that of naïve conventional CD4+ T cells. Considering the absence of PLZF expression in naïve T–T CD4+ T cells, these results suggest that PLZF-negative naïve T–T CD4+ T cells are functionally equivalent to conventional naïve CD4+ T cells in terms of B-cell help

    An exclusively dopamine secreting paraganglioma in the retroperitoneum: a first clinical case in Korea

    Get PDF
    Exclusively dopamine producing retroperitoneal paragangliomas are extremely rare. We have experienced the first Korean case managed successfully based on the proper evaluation. A 26-year-old female patient came to our attention after the accidental detection of an adrenal mass. She had no symptoms and denied any family history. Laboratory evaluations were normal but serum dopamine (425 ng/L) and 24-hour urine dopamine levels (1,565.3 µg/day) were elevated. She underwent laparoscopic right adrenalectomy. Histopathological diagnosis was a paraganglioma. After operation, dopamine levels in serum and 24-hour urine dropped to 0.09 ng/L and 388.4 µg/day. Dopamine producing paraganglioma elicit no clinical symptoms. Only the dopamine level is elevated in serum and 24-hour urine samples. Surgical resection without using preoperative alpha blockage is the treatment of choice. The prognosis for patients with this tumor tends to be poor because the diagnosis is usually delayed due to lack of symptoms

    Assessment of Esophageal Reconstruction via Bioreactor Cultivation of a Synthetic Scaffold in a Canine Model

    Get PDF
    Objectives Using tissue-engineered materials for esophageal reconstruction is a technically challenging task in animals that requires bioreactor training to enhance cellular reactivity. There have been many attempts at esophageal tissue engineering, but the success rate has been limited due to difficulty in initial epithelialization in the special environment of peristalsis. The purpose of this study was to evaluate the potential of an artificial esophagus that can enhance the regeneration of esophageal mucosa and muscle through the optimal combination of a double-layered polymeric scaffold and a custom-designed mesenchymal stem cell-based bioreactor system in a canine model. Methods We fabricated a novel double-layered scaffold as a tissue-engineered esophagus using an electrospinning technique. Prior to transplantation, human-derived mesenchymal stem cells were seeded into the lumen of the scaffold, and bioreactor cultivation was performed to enhance cellular reactivity. After 3 days of cultivation using the bioreactor system, tissue-engineered artificial esophagus was transplanted into a partial esophageal defect (5×3 cm-long resection) in a canine model. Results Scanning electron microscopy (SEM) showed that the electrospun fibers in a tubular scaffold were randomly and circumferentially located toward the inner and outer surfaces. Complete recovery of the esophageal mucosa was confirmed by endoscopic analysis and SEM. Esophagogastroduodenoscopy and computed tomography also showed that there were no signs of leakage or stricture and that there was a normal lumen with complete epithelialization. Significant regeneration of the mucosal layer was observed by keratin-5 immunostaining. Alpha-smooth muscle actin immunostaining showed significantly greater esophageal muscle regeneration at 12 months than at 6 months. Conclusion Custom-designed bioreactor cultured electrospun polyurethane scaffolds can be a promising approach for esophageal tissue engineering

    Generation of PLZF+ CD4+ T cells via MHC class II–dependent thymocyte–thymocyte interaction is a physiological process in humans

    Get PDF
    Human thymocytes, unlike mouse thymocytes, express major histocompatibility complex (MHC) class II molecules on their surface, especially during the fetal and perinatal stages. Based on this observation, we previously identified a novel developmental pathway for the generation of CD4+ T cells via interactions between MHC class II–expressing thymocytes (thymocyte–thymocyte [T–T] interactions) with a transgenic mouse system. However, the developmental dissection of this T–T interaction in humans has not been possible because of the lack of known cellular molecules specific for T–T CD4+ T cells. We show that promyelocytic leukemia zinc finger protein (PLZF) is a useful marker for the identification of T–T CD4+ T cells. With this analysis, we determined that a substantial number of fetal thymocytes and splenocytes express PLZF and acquire innate characteristics during their development in humans. Although these characteristics are quite similar to invariant NKT (iNKT) cells, they clearly differ from iNKT cells in that they have a diverse T cell receptor repertoire and are restricted by MHC class II molecules. These findings define a novel human CD4+ T cell subset that develops via an MHC class II–dependent T–T interaction

    Prognostic perspectives of PD-L1 combined with tumor-infiltrating lymphocytes, Epstein-Barr virus, and microsatellite instability in gastric carcinomas

    Get PDF
    Background The prognostic potential of PD-L1 is currently unclear in gastric carcinomas, although the immune checkpoint PD-1/PD-L1 inhibitors have produced promising results in clinical trials. Methods We explored the prognostic implications of programmed death ligand 1 (PD-L1) in 514 consecutive surgically-resected gastric carcinomas. Overall survival and recurrence-free survival were evaluated. Immunohistochemistry for PD-L1, CD8, FOXP3, and PD-1, and molecular grouping by in situ hybridization for Epstein-Barr virus (EBV)-encoded small RNAs and multiplex PCR for microsatellite instability (MSI) markers were performed. Additionally, to explore the function inherent to PD-L1, PD-L1-specific siRNA transfection, cell proliferation, invasion, migration and apoptosis assays were conducted in five gastric carcinoma cell lines. Results PD-L1(+) tumor and immune cells were observed in 101 (20%) and 244 patients (47%), respectively. Tumoral PD-L1(+)/immune cell PD-L1(-)/CD8+/low tumor-infiltrating lymphocytes (TILs), and more advanced-stage tumors were associated with unfavorable clinical outcomes in the entire cohort through multivariate analysis. Furthermore, tumoral PD-L1(+)/FOXP3+/low TILs were associated with worse clinical outcomes in EBV-positive and MSI-high carcinomas. Tumoral PD-L1(+) alone was an adverse prognostic factor in EBV-positive carcinomas, but not in MSI-high carcinomas, whereas PD-L1(+) immune cells or FOXP3+/high TILs alone were correlated with a favorable prognosis. PD-L1 knockdown in gastric carcinoma cells suppressed cell proliferation, invasion and migration, and increased apoptosis, which were all statistically significant in two EBV(+) cell lines, but not all in three EBV(−) cell lines. Conclusions The prognostic impact of PD-L1 may depend on the tumor microenvironment, and statuses of EBV and MSI, although PD-L1 innately promotes cancer cell survival in cell-based assays. The combination of tumoral PD-L1/immune cell PD-L1/CD8+ TILs may serve as an independent prognostic factor. Tumoral PD-L1(+)/immune cell PD-L1(−)/CD8+/low TILs showing a worse prognosis may be beneficial for combinatorial therapies of anti-PD-L1/PD-1 and anti-cytotoxic T-lymphocyte associated antigen 4 (CTLA4) that would promote effector T cells, thus attack the tumor.This work was supported by the Basic Science Research Program of the National Research Foundation of Korea, which is funded by the Ministry of Education (2016R1D1A1B01010316)

    Long-lasting Corolla Cultivars in Japanese Azaleas: A Mutant AP3/DEF Homolog Identified in Traditional Azalea Cultivars from More Than 300 Years Ago

    No full text
    Floral shape in higher plants typically requires genetic regulation through MADS transcription factors. In Japan, hundreds of azalea cultivars including flower shape mutations have been selected from the diversity of endogenous species and natural hybrids since the early 17th century, the Edo era (1603–1867). The long-lasting trait, known as “Misome-shō” in Japanese, has been identified in several species and cultivar groups of evergreen azaleas (Rhododendron L.) from three hundred years ago in Japan. However, the natural mutation conferring the long-lasting trait in azalea remains unknown. Here, we showed MADS-box gene mutations in long-lasting flowers, R. kaempferi ‘Nikkō-misome,’ R. macrosepalum ‘Kochō-zoroi,’ R. indicum ‘Chōjyu-hō,’ and R. × hannoense ‘Amagi-beni-chōjyu.’ All of the long-lasting flowers exhibited small-sized corollas with stomata during long blooming. In the long-lasting flowers, transcript of the APETALA3 (AP3)/DEFICIENS (DEF) homolog was reduced, and an LTR-retrotransposon was independently inserted into exons 1, 2, and 7 or an unknown sequence in exon 1 in gDNA of each cultivar. This insertion apparently abolished the normal mRNA sequence of the AP3/DEF homolog in long-lasting flowers. Also, long-lasting flowers were shown from F2 hybrids that had homozygous ap3/def alleles. Therefore, we concluded that the loss of function of the AP3/DEF homolog through a transposable element insertion may confer a stable long-lasting mutation in evergreen azaleas
    corecore