17 research outputs found

    Primaquine in vivax malaria: an update and review on management issues

    Get PDF
    Primaquine was officially licensed as an anti-malarial drug by the FDA in 1952. It has remained the only FDA licensed drug capable of clearing the intra-hepatic schizonts and hypnozoites of Plasmodium vivax. This update and review focuses on five major aspects of primaquine use in treatment of vivax malaria, namely: a) evidence of efficacy of primaquine for its current indications; b) potential hazards of its widespread use, c) critical analysis of reported resistance against primaquine containing regimens; d) evidence for combining primaquine with artemisinins in areas of chloroquine resistance; and e) the potential for replacement of primaquine with newer drugs

    Falciparum malaria molecular drug resistance in the Democratic Republic of Congo: a systematic review

    Full text link
    peer reviewedBackground: Malaria cases were estimated to 207 million in 2013. One of the problems of malaria control is the emergence and spread of Plasmodium falciparum strains that become resistant to almost all drugs available. Monitoring drug resistance is essential for early detection and subsequent prevention of the spread of drug resistance by timely changes of treatment policy. This review was performed to gather all data available on P. falciparum molecular resistance in DR Congo, as baseline for future assessments. Methods: The search for this review was undertaken using the electronic databases PubMed and Google Scholar using the terms “malaria”, “Congo”, “resistance”, “molecular”, “antimalarial”, “efficacy”. Articles were classified based on year of collecting, year of publication, sample size and characteristics, molecular markers analysed and polymorphisms detected. Results: Thirteen articles were included and five genes have been analysed in these studies: pfcrt, pfdhps, pfdhfr, pfmdr1 and K13-propeller. The majority of studies included were not representative of the whole country. Conclusion: This systematic review demonstrates the lack of molecular resistance studies in DRC. Only 13 studies were identified in almost 15 years. The MOH must implement a national surveillance system for monitoring malaria drug resistance and this surveillance should be conducted frequently and country-representative

    Serological evidence indicates widespread distribution of rickettsioses in Myanmar

    No full text
    Background Little research has been published on the prevalence of rickettsial infections in Myanmar. This study determined the seroprevalence of immunoglobulin G (IgG) antibodies to rickettsial species in different regions of Myanmar. Methods Seven hundred leftover blood samples from patients of all ages in primary care clinics and hospitals in seven regions of Myanmar were collected. Samples were screened for scrub typhus group (STG), typhus group (TG) and spotted fever group (SFG) IgG antibodies using enzyme-linked immunosorbent assays (ELISA). Immunofluorescence assays were performed for the same rickettsial groups to confirm seropositivity if ELISA optical density ≥0.5. Results Overall IgG seroprevalence was 19% [95% confidence interval (CI) 16–22%] for STG, 5% (95% CI 3–7%) for TG and 3% (95% CI: 2–5%) for SFG. The seroprevalence of STG was particularly high in northern and central Myanmar (59% and 19–33%, respectively). Increasing age was associated with higher odds of STG and TG seropositivity [per 10-year increase, adjusted odds ratio estimate 1.68 (p < 0.01) and 1.24 (p = 0.03), respectively]. Conclusion Rickettsial infections are widespread in Myanmar, with particularly high seroprevalence of STG IgG antibodies in central and northern regions. Healthcare workers should consider rickettsial infections as common causes of fever in Myanmar

    Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption

    No full text
    Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases
    corecore