4 research outputs found

    Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar

    Get PDF
    Background: Myanmar cattle populations predominantly consist of native cattle breeds (Pyer Sein and Shwe), characterized by their geographical location and coat color, and the Holstein-Friesian crossbreed, which is highly adapted to the harsh tropical climates of this region. Here, we analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus that has been linked to the immune response, in Myanmar cattle populations. Methods: Blood samples (n = 294) were taken from two native breeds (Pyer Sein, n = 163 and Shwe Ni, n = 69) and a cattle crossbreed (Holstein-Friesian, n = 62) distributed across six regions of Myanmar (Bago, n = 38; Sagaing, n = 77; Mandalay, n = 46; Magway, n = 46; Kayin, n = 43; Yangon, n = 44). In addition, a database that included 2428 BoLA-DRB3 genotypes from European (Angus, Hereford, Holstein, Shorthorn, Overo Negro, Overo Colorado, and Jersey), Zebuine (Nellore, Brahman and Gir), Asian Native from Japan and Philippine and Latin-American Creole breeds was also included. Furthermore, the information from the IPD-MHC database was also used in the present analysis. DNA was genotyped using the sequence-based typing method. DNA electropherograms were analyzed using the Assign 400ATF software. Results: We detected 71 distinct alleles, including three new variants for the BoLA-DRB3 gene. Venn analysis showed that 11 of these alleles were only detected in Myanmar native breeds and 26 were only shared with Asian native and/or Zebu groups. The number of alleles ranged from 33 in Holstein-Friesians to 58 in Pyer Seins, and the observed versus unbiased expected heterozygosity were higher than 0.84 in all the three the populations analyzed. The FST analysis showed a low level of genetic differentiation between the two Myanmar native breeds (FST = 0.003), and between these native breeds and the Holstein-Friesians (FST < 0.021). The average F ST value for all the Myanmar Holstein-Friesian crossbred and Myanmar native populations was 0.0136 and 0.0121, respectively. Principal component analysis (PCA) and tree analysis showed that Myanmar native populations grouped in a narrow cluster that diverged clearly from the Holstein-Friesian populations. Furthermore, the BoLA-DRB3 allele frequencies suggested that while some Myanmar native populations from Bago, Mandalay and Yangon regions were more closely related to Zebu breeds (Gir and Brahman), populations from Kayin, Magway and Sagaing regions were more related to the Philippines native breeds. On the contrary, PCA showed that the Holstein-Friesian populations demonstrated a high degree of dispersion, which is likely the result of the different degrees of native admixture in these populations. Conclusion: This study is the first to report the genetic diversity of the BoLA-DRB3 gene in two native breeds and one exotic cattle crossbreed from Myanmar. The results obtained contribute to our understanding of the genetic diversity and distribution of BoLA-DRB3 gene alleles in Myanmar, and increases our knowledge of the worldwide variability of cattle BoLA-DRB3 genes, an important locus for immune response and protection against pathogens.Fil: Giovambattista, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Moe, Kyaw Kyaw. University of Veterinary Science; BirmaniaFil: Polat, Meripet. No especifíca;Fil: Borjigin, Liushiqi. No especifíca;Fil: Hein, Si Thu. University Of Veterinary Science; BirmaniaFil: Moe, Hla Hla. University Of Veterinary Science; BirmaniaFil: Takeshima, Shin Nosuke. No especifíca;Fil: Aida, Yoko. No especifíca

    New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization.

    No full text
    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and causes serious problems for the cattle industry. In this study, we examined the prevalence of BLV infection and the distribution of BLV genotypes in cattle in the northern, central, and southern parts of Myanmar. The prevalence of BLV infection among Myanmar cattle (37.04%) in this study was markedly higher than the prevalence (9.1%) observed in our earlier study in which BLV was detected from the limited number of cattle only from a small area of Myanmar. Phylogenetic analysis of partial env-gp51 sequence of the isolated BLV strains revealed that there are at least three BLV genotypes (genotype-1, genotype-6, and genotype-10) in Myanmar, which have also been detected in the neighboring countries. We performed this study to estimate the BLV proviral load, which is a major diagnosis index for determining the virus transmission risk. The cattle of the three test regions with warm, wet, and humid climatic conditions (upper Sagaing, Yangon, and Kayin) exhibited a high mean proviral load, while cattle of three other regions with low annual rainfall and very high temperature (Mandalay, Magway, and upper Bago) exhibited a low mean proviral load. Further, the level of proviral load and the prevalence of BLV infection in Myanmar native cattle (N = 235) were lower than that in the hybrid cattle (Holstein Friesian × Myanmar native) (N = 62). We also observed that the cattle with high risk for BLV transmission, which have high proviral load, may enhance the BLV infection rate. Hence, to control BLV transmission, it is necessary to eliminate these cattle with high-risk for BLV transmission and to diagnose BLV provirus in cattle in the remaining regions/states of Myanmar sharing a boundary with neighboring countries
    corecore