18,613 research outputs found
i-Perception
We tested the influence of perceptual features on semantic associations between the acoustic characteristics of vowels and the notion of size. To this end, we designed an experiment in which we manipulated size on two dissociable levels: the physical size of the pictures presented during the experiment (perceptual level) and the implied size of the objects depicted in the pictures (semantic level). Participants performed an Implicit Association Test in which the pictures of small objects were larger than those of large objects – that is, the actual size ratio on the semantic level was inverted on the perceptual level. Our results suggest that participants matched visual and acoustic stimuli in accordance with the content of the pictures (i.e., the inferred size of the depicted object), whereas directly perceivable features (i.e., the physical size of the picture) had only a marginal influence on participants’ performance. Moreover, as the experiment has been conducted at two different sites (Japan and Germany), the results also suggest that the participants’ cultural background or mother tongue had only a negligible influence on the effect. Our results, therefore, support the assumption that associations across sensory modalities can be motivated by the semantic interpretation of presemantic stimuli
Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon
We investigate the possibilities of producing neutron-rich nuclides in
projectile fission of heavy beams in the energy range of 20 MeV/nucleon
expected from low-energy facilities. We report our efforts to theoretically
describe the reaction mechanism of projectile fission following a multinucleon
transfer collision at this energy range. Our calculations are mainly based on a
two-step approach: the dynamical stage of the collision is described with
either the phenomenological Deep-Inelastic Transfer model (DIT), or with the
microscopic Constrained Molecular Dynamics model (CoMD). The
deexcitation/fission of the hot heavy projectile fragments is performed with
the Statistical Mul- tifragmentation Model (SMM). We compared our model
calculations with our previous experimental projectile-fission data of 238U (20
MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall
reasonable agreement. Our study suggests that projectile fission following
periph- eral heavy-ion collisions at this energy range offers an effective
route to access very neutron-rich rare isotopes toward and beyond the
astrophysical r-process path
Does Experimental Anterior Knee Pain Alter Effects of Running on Femoral Articular Cartilage Thickness and Volume? A Pilot Study
Anterior knee pain is a common problem for runners that often alters running biomechanics. It is unclear how/if changes in running biomechanics due to anterior knee pain affect knee articular cartilage health. PURPOSE: To determine if experimental anterior knee pain during running acutely alters deformation in femoral articular cartilage due to running. METHODS: 10 runners completed three sessions that each in- volved a 60-min treadmill run: a control, sham, and pain session. Experimental anterior knee pain was in- duced during the pain session via a continuous infusion of hypertonic saline into the infrapatellar fat pad. The sham and control sessions involved a continuous infusion of physiological saline and no infusion, re- spectively. Before and after running, magnetic resonance imaging was used to quantify femoral articular cartilage thickness and volume. A repeated measures ANOVA was used to evaluate effects of running with experimental anterior knee pain on perceived knee pain and femoral articular cartilage deformation (α = 0.05). RESULTS: Perceived anterior knee pain was significantly greater during the pain session relative to the control and sham sessions (p p = 0.05), and more due to the pain session run (-57.7 ± 157.4 mm3) than the control session run (p = 0.09). No significant effects of session were observed for medial or lateral thickness or lateral volume. CONCLUSION: Articular cartilage response to running (medial femoral volume) was different for the pain and sham sessions relative to the control session. The physiological and hypertonic saline infusions appeared to alter medial knee articular cartilage response to running. These changes might be due to altered biomechanics due to the infusions. Additional research is needed to clarify the cause of the altered response to running
Spectrum of Eleven-dimensional Supergravity on a PP-wave Background
We calculate the spectrum of the linearized supergravity around the maximally
supersymmetric pp-wave background in eleven dimensions. The resulting spectrum
agrees with that of zero-mode Hamiltonian of a supermembrane theory on the
pp-wave background. We also discuss the connection with the Kaluza-Klein zero
modes of AdS_4 x S^7 background.Comment: 17 pages, no figures, LaTeX2e, typos correcte
Dynamic behavior of driven interfaces in models with two absorbing states
We study the dynamics of an interface (active domain) between different
absorbing regions in models with two absorbing states in one dimension;
probabilistic cellular automata models and interacting monomer-dimer models.
These models exhibit a continuous transition from an active phase into an
absorbing phase, which belongs to the directed Ising (DI) universality class.
In the active phase, the interface spreads ballistically into the absorbing
regions and the interface width diverges linearly in time. Approaching the
critical point, the spreading velocity of the interface vanishes algebraically
with a DI critical exponent. Introducing a symmetry-breaking field that
prefers one absorbing state over the other drives the interface to move
asymmetrically toward the unpreferred absorbing region. In Monte Carlo
simulations, we find that the spreading velocity of this driven interface shows
a discontinuous jump at criticality. We explain that this unusual behavior is
due to a finite relaxation time in the absorbing phase. The crossover behavior
from the symmetric case (DI class) to the asymmetric case (directed percolation
class) is also studied. We find the scaling dimension of the symmetry-breaking
field .Comment: 5 pages, 5 figures, Revte
Theoretical study of metal borides stability
We have recently identified metal-sandwich (MS) crystal structures and shown
with ab initio calculations that the MS lithium monoboride phases are favored
over the known stoichiometric ones under hydrostatic pressure [Phys. Rev. B 73,
180501(R) (2006)]. According to previous studies synthesized lithium monoboride
tends to be boron-deficient, however the mechanism leading to this phenomenon
is not fully understood. We propose a simple model that explains the
experimentally observed off-stoichiometry and show that compared to such
boron-deficient phases the MS-LiB compounds still have lower formation enthalpy
under high pressures. We also investigate stability of MS phases for a large
class of metal borides. Our ab initio results suggest that MS noble metal
borides are less unstable than the corresponding AlB-type phases but not
stable enough to form under equilibrium conditions.Comment: 14 pages, 15 figure
Exchange Field Induced Magnetoresistance in Colossal Magnetoresistance Manganites
The effect of an exchange field on electrical transport in thin films of
metallic ferromagnetic manganites has been investigated. The exchange field was
induced both by direct exchange coupling in a ferromagnet/antiferromagnet
multilayer and by indirect exchange interaction in a ferromagnet/paramagnet
superlattice. The electrical resistance of the manganite layers was found to be
determined by the absolute value of the vector sum of the effective exchange
field and the external magnetic field.Comment: 5 pages, 4 figure
A superfluid hydrodynamic model for the enhanced moments of inertia of molecules in liquid 4He
We present a superfluid hydrodynamic model for the increase in moment of
inertia, , of molecules rotating in liquid He. The static
inhomogeneous He density around each molecule (calculated using the Orsay-Paris
liquid He density functional) is assumed to adiabatically follow the
rotation of the molecule. We find that the values created by the
viscousless and irrotational flow are in good agreement with the observed
increases for several molecules [ OCS, (HCN), HCCCN, and HCCCH ]. For
HCN and HCCH, our model substantially overestimates . This is likely
to result from a (partial) breakdown of the adiabatic following approximation.Comment: 4 pages, 1 eps figure, corrected version of published paper. Erratum
has been submitted for change
- …