6,117 research outputs found
UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells
The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells. © 2012 Kwon et al
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
AdS/BCFT Correspondence for Higher Curvature Gravity: An Example
We consider the effects of higher curvature terms on a holographic dual
description of boundary conformal field theory. Specifically, we consider
three-dimensional gravity with a specific combination of Ricci tensor square
and curvature scalar square, so called, new massive gravity. We show that a
boundary entropy and an entanglement entropy are given by similar expression
with those of the Einstein gravity case when we introduce an {\it effective}
Newton's constant and an {\it effective} cosmological constant. We also show
that the holographic g-theorem still holds in this extension, and we give some
comments about the central charge dependence of boundary entropy in the
holographic construction. In the same way, we consider new type black holes and
comment on the boundary profile. Moreover, we reproduce these results through
auxiliary field formalism in this specific higher curvature gravity.Comment: 27pages, minor corrections, accepted in JHE
Observation of spin Coulomb drag in a two-dimensional electron gas
An electron propagating through a solid carries spin angular momentum in
addition to its mass and charge. Of late there has been considerable interest
in developing electronic devices based on the transport of spin, which offer
potential advantages in dissipation, size, and speed over charge-based devices.
However, these advantages bring with them additional complexity. Because each
electron carries a single, fixed value (-e) of charge, the electrical current
carried by a gas of electrons is simply proportional to its total momentum. A
fundamental consequence is that the charge current is not affected by
interactions that conserve total momentum, notably collisions among the
electrons themselves. In contrast, the electron's spin along a given spatial
direction can take on two values, "up" and "down", so that the spin current and
momentum need not be proportional. Although the transport of spin polarization
is not protected by momentum conservation, it has been widely assumed that,
like the charge current, spin current is unaffected by electron-electron (e-e)
interactions. Here we demonstrate experimentally not only that this assumption
is invalid, but that over a broad range of temperature and electron density,
the flow of spin polarization in a two-dimensional gas of electrons is
controlled by the rate of e-e collisions
Associations of sedentary behaviour, physical activity, blood pressure and anthropometric measures with cardiorespiratory fitness in children with cerebral palsy
Background - Children with cerebral palsy (CP) have poor cardiorespiratory fitness in comparison to their peers with typical development, which may be due to low levels of physical activity. Poor cardiorespiratory fitness may contribute to increased cardiometabolic risk. Purpose - The aim of this study was to determine the association between sedentary behaviour, physical activity and cardiorespiratory fitness in children with CP. An objective was to determine the association between cardiorespiratory fitness, anthropometric measures and blood pressure in children with CP. Methods- This study included 55 ambulatory children with CP [mean (SD) age 11.3 (0.2) yr, range 6-17 yr; Gross Motor Function Classification System (GMFCS) levels I and II]. Anthropometric measures (BMI, waist circumference and waist-height ratio) and blood pressure were taken. Cardiorespiratory fitness was measured using a 10 m shuttle run test. Children were classified as low, middle and high fitness according to level achieved on the test using reference curves. Physical activity was measured by accelerometry over 7 days. In addition to total activity, time in sedentary behaviour and light, moderate, vigorous, and sustained moderate-to-vigorous activity (≥10 min bouts) were calculated. Results - Multiple regression analyses revealed that vigorous activity (β = 0.339, p<0.01), sustained moderate-to-vigorous activity (β = 0.250, p<0.05) and total activity (β = 0.238, p<0.05) were associated with level achieved on the shuttle run test after adjustment for age, sex and GMFCS level. Children with high fitness spent more time in vigorous activity than children with middle fitness (p<0.05). Shuttle run test level was negatively associated with BMI (r2 = -0.451, p<0.01), waist circumference (r2 = -0.560, p<0.001), waist-height ratio (r2 = -0.560, p<0.001) and systolic blood pressure (r2 = -0.306, p<0.05) after adjustment for age, sex and GMFCS level. Conclusions - Participation in physical activity, particularly at a vigorous intensity, is associated with high cardiorespiratory fitness in children with CP. Low cardiorespiratory fitness is associated with increased cardiometabolic risk
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
In-medium hadronic spectral functions through the soft-wall holographic model of QCD
We study the scalar glueball and vector meson spectral functions in a hot and
dense medium by means of the soft-wall holographic model of QCD. Finite
temperature and density effects are implemented through the AdS/RN metric. We
analyse the behaviour of the hadron masses and widths in the plane,
and compare our results with the experimental ones and with other theoretical
determinations.Comment: 16 pages, 6 figures. matching the published versio
Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53
Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets.
Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region.
Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes
Holographic Renormalization and Stress Tensors in New Massive Gravity
We obtain holographically renormalized boundary stress tensors with the
emphasis on a special point in the parameter space of three dimensional new
massive gravity, using the so-called Fefferman-Graham coordinates with relevant
counter terms. Through the linearized equations of motion with a standard
prescription, we also obtain correlators among these stress tensors. We argue
that the self-consistency of holographic renormalization determines counter
terms up to unphysical ambiguities. Using these renormalized stress tensors in
Fefferman-Graham coordinates, we obtain the central charges of dual CFT, and
mass and angular momentum of some black hole solutions. These results are
consistent with the previous ones obtained by other methods. In this study on
the Fefferman-Graham expansion of new massive gravity, some aspects of higher
curvature gravity are revealed.Comment: Version accepted for publication in JHEP, conclusion revised,
references adde
Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors
We study the Chern-Simons black holes in d-dimensions and we calculate
analytically the quasi-normal modes of the scalar perturbations and we show
that they depend on the highest power of curvature present in the Chern-Simons
theory. We obtain the mass and area spectrum of these black holes and we show
that they have a strong dependence on the topology of the transverse space and
they are not evenly spaced. We also calculate analytically the reflection and
transmission coefficients and the absorption cross section and we show that at
low frequency limit there is a range of modes which contributes to the
absorption cross section.Comment: 19 pages, 18 figures, the title has been changed to reflect the
addition of an another section on the reflection, transmission coefficients
and absorption cross sections of the Chern-Simons black holes. Version to be
published in JHE
- …
