19,794 research outputs found
Macromolecular structural dynamics visualized by pulsed dose control in 4D electron microscopy
Macromolecular conformation dynamics, which span a wide range of time scales, are fundamental to the understanding of properties and functions of their structures. Here, we report direct imaging of structural dynamics of helical macromolecules over the time scales of conformational dynamics (ns to subsecond) by means of four-dimensional (4D) electron microscopy in the single-pulse and stroboscopic modes. With temporally controlled electron dosage, both diffraction and real-space images are obtained without irreversible radiation damage. In this way, the order-disorder transition is revealed for the organic chain polymer. Through a series of equilibrium-temperature and temperature-jump dependencies, it is shown that the metastable structures and entropy of conformations can be mapped in the nonequilibrium region of a “funnel-like” free-energy landscape. The T-jump is introduced through a substrate (a “hot plate” type arrangement) because only the substrate is made to absorb the pulsed energy. These results illustrate the promise of ultrafast 4D imaging for other applications in the study of polymer physics as well as in the visualization of biological phenomena
Extending Romanovski polynomials in quantum mechanics
Some extensions of the (third-class) Romanovski polynomials (also called
Romanovski/pseudo-Jacobi polynomials), which appear in bound-state
wavefunctions of rationally-extended Scarf II and Rosen-Morse I potentials, are
considered. For the former potentials, the generalized polynomials satisfy a
finite orthogonality relation, while for the latter an infinite set of
relations among polynomials with degree-dependent parameters is obtained. Both
types of relations are counterparts of those known for conventional
polynomials. In the absence of any direct information on the zeros of the
Romanovski polynomials present in denominators, the regularity of the
constructed potentials is checked by taking advantage of the disconjugacy
properties of second-order differential equations of Schr\"odinger type. It is
also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to
Rosen-Morse I potentials, the variety of rational extensions is narrowed down
from types I, II, and III to type III only.Comment: 25 pages, no figure, small changes, 3 additional references,
published versio
Structure And Properties of Nanoparticles Formed under Conditions of Wire Electrical Explosion
Structure and properties of nanoparticles formed under conditions of wire
electrical explosion were studied. It was shown that the state of WEE power
particles can be characterized as a metastable state. It leads to an increased
stability of nanopowders at normal temperatures and an increased reactivity
during heating, which is revealed in the form of threshold phenomena.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_2O_5
We have investigated electronic structures of antiferromagnetic YBaCo_2O_5
using the local spin-density approximation (LSDA) + U method. The charge and
orbital ordered insulating ground state is correctly obtained with the strong
on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the
high spin (HS) and intermediate spin (IS) state, respectively. It is considered
that the tetragonal to orthorhombic structural transition is responsible for
the ordering phenomena and the spin states of Co ions. The large contribution
of the orbital moment to the total magnetic moment indicates that the
spin-orbit coupling is also important in YBaCo_2O_5.Comment: 4 pages including 4 figures, Submitted to Phys. Rev. Let
Arginyltransferase, Its Specificity, Putative Substrates, Bidirectional Promoter, and Splicing-derived Isoforms
Substrates of the N-end rule pathway include proteins with destabilizing N-terminal residues. Three of them, Asp, Glu, and (oxidized) Cys, function through their conjugation to Arg, one of destabilizing N-terminal residues that are recognized directly by the pathway's ubiquitin ligases. The conjugation of Arg is mediated by arginyltransferase, encoded by ATE1. Through its regulated degradation of specific proteins, the arginylation branch of the N-end rule pathway mediates, in particular, the cardiovascular development, the fidelity of chromosome segregation, and the control of signaling by nitric oxide. We show that mouse ATE1 specifies at least six mRNA isoforms, which are produced through alternative splicing, encode enzymatically active arginyltransferases, and are expressed at varying levels in mouse tissues. We also show that the ATE1 promoter is bidirectional, mediating the expression of both ATE1 and an oppositely oriented, previously uncharacterized gene. In addition, we identified GRP78 (glucose-regulated protein 78) and protein-disulfide isomerase as putative physiological substrates of arginyltransferase. Purified isoforms of arginyltransferase that contain the alternative first exons differentially arginylate these proteins in extract from ATE1-/- embryos, suggesting that specific isoforms may have distinct functions. Although the N-end rule pathway is apparently confined to the cytosol and the nucleus, and although GRP78 and protein-disulfide isomerase are located largely in the endoplasmic reticulum, recent evidence suggests that these proteins are also present in the cytosol and other compartments in vivo, where they may become N-end rule substrates
Using Multimedia Interactive Grammar to Enhance Possessive Pronouns Among Year 4 Pupils
This study was designed to improve the students' grammar specifically in possessive pronouns using Multimedia Interactive Grammar (MIG) as a teaching and learning strategy. The participants of the study were Year 4 pupils from a primary school and the researcher was the teacher who conducted the action research in the classroom and the cycle of the intervention had been done once. The data collected were tests, supported with interview and teacher's reflective journal. Improvement was shown based on the data obtained as there was an increase of scores in the second test compared to first test. Moreover, it was found that MIG was able to enhance pupils' understanding, motivation and promote fun learning in the classroom. The results of the study indicated pupils' positive behaviors and responses towards the use of MIG in learning grammar
Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction
We measure the Hall conductivity of a two-dimensional electron gas formed at
a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron
resonance frequency by employing a highly sensitive Faraday rotation method
coupled with electrical gating of the sample to change the electron density. We
observe clear plateau-and step-like features in the Faraday rotation angle vs.
electron density and magnetic field (Landau-level filling factor), which are
the high frequency manifestation of quantum Hall plateaus - a signature of
topologically protected edge states. The results are compared to a recent
dynamical scaling theory.Comment: 18 pages, 3 figure
- …