50 research outputs found

    Meniscus-Guided Micro-Printing of Prussian Blue for Smart Electrochromic Display

    Get PDF
    Using energy-saving electrochromic (EC) displays in smart devices for augmented reality makes cost-effective, easily producible, and efficiently operable devices for specific applications possible. Prussian blue (PB) is a metal-organic coordinated compound with unique EC properties that limit EC display applications due to the difficulty in PB micro-patterning. This work presents a novel micro-printing strategy for PB patterns using localized crystallization of FeFe(CN)(6) on a substrate confined by the acidic-ferric-ferricyanide ink meniscus, followed by thermal reduction at 120 degrees C, thereby forming PB. Uniform PB patterns can be obtained by manipulating printing parameters, such as the concentration of FeCl3 center dot K3Fe(CN)(6), printing speed, and pipette inner diameter. Using a 0.1 M KCl (pH 4) electrolyte, the printed PB pattern is consistently and reversibly converted to Prussian white (CV potential range: -0.2-0.5 V) with 200 CV cycles. The PB-based EC display with a navigation function integrated into a smart contact lens is able to display directions to a destination to a user by receiving GPS coordinates in real time. This facile method for forming PB micro-patterns could be used for advanced EC displays and various functional devices

    Global retrieval of stratospheric and tropospheric BrO columns from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) on board the Suomi-NPP satellite

    Get PDF
    Quantifying the global bromine monoxide (BrO) budget is essential to understand ozone chemistry better. In particular, the tropospheric BrO budget has not been well characterized. Here, we retrieve nearly a decade (February 2012–July 2021) of stratospheric and tropospheric BrO vertical columns from the Ozone Mapping and Profiling Suite Nadir Mapper (OMPS-NM) on board the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite. In quantifying tropospheric BrO enhancements from total slant columns, the key aspects involve segregating them from stratospheric enhancements and applying appropriate air mass factors. To address this concern and improve upon the existing methods, our study proposes an approach that applies distinct BrO vertical profiles based on the presence or absence of tropospheric BrO enhancement at each pixel, identifying it dynamically using a satellite-derived stratospheric-ozone–BrO relationship. We demonstrate good agreement for both stratosphere (r = 0.81–0.83) and troposphere (r = 0.50–0.70) by comparing monthly mean BrO vertical columns from OMPS-NM with ground-based observations from three stations (Lauder, Utqiaġvik, and Harestua). Although algorithm performance is primarily assessed at high latitudes, the OMPS-NM BrO retrievals successfully capture tropospheric enhancements not only in polar regions but also in extrapolar areas, such as the Rann of Kutch and the Great Salt Lake. We also estimate random uncertainties in the retrievals pixel by pixel, which can assist in quantitative applications of the OMPS-NM BrO dataset. Our BrO retrieval algorithm is designed for cross-sensor applications and can be adapted to other space-borne ultraviolet spectrometers, contributing to the creation of continuous long-term satellite BrO observation records.</p

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA&apos;s TEMPO and ESA&apos;s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Successful Interventional Treatment of a Huge Pseudoaneurysm of the Popliteal Artery Caused by a Percutaneous Balloon Angioplasty Complication: A Case Report

    No full text
    Pseudoaneurysms are among the most serious complications of percutaneous balloon angioplasty. Although pseudoaneurysm rupture rarely happens, when it does, the result can be fatal; thus, early detection and management are crucial. In this report, we disclose the case of a 34-year-old male with end-stage renal disease who presented with a huge symptomatic pseudoaneurysm of the left popliteal artery, following percutaneous balloon angioplasty three months prior. The pseudoaneurysm was successfully excluded using interventional treatment. The patient recovered well, and the followup was uneventful, with excellent patency of the covered stent

    Zuonin B Inhibits Lipopolysaccharide-Induced Inflammation via Downregulation of the ERK1/2 and JNK Pathways in RAW264.7 Macrophages

    Get PDF
    We investigated whether Zuonin B exerts immunological effects on RAW264.7 cells. Zuonin B, isolated from flower buds of Daphne genkwa, suppressed the levels of nitric oxide and prostaglandin E2, as well as proinflammatory cytokines, such as tumor necrosis factor-α and interleukin-(IL-) 6, in lipopolysaccharide-stimulated macrophages. Moreover, the compound inhibited cyclooxygenase-2 and inducible nitric oxide synthase expression. Zuonin B attenuated NF-kappaB (NF-κB) activation via suppressing proteolysis of inhibitor kappa B-alpha (IκB-α) and p65 nuclear translocation as well as phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase. Additionally, IL-4 and IL-13 production in ConA-induced splenocytes was inhibited by Zuonin B. In conclusion, the anti-inflammatory effects of Zuonin B are attributable to the suppression of proinflammatory cytokines and mediators via blockage of NF-κB and AP-1 activation. Based on these findings, we propose that Zuonin B is potentially an effective functional chemical candidate for the prevention of inflammatory diseases

    HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    Get PDF
    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer.11sciescopu
    corecore