1,146 research outputs found

    Homotopy Structure of 5d Vacua

    Full text link
    It is shown that flat zero-energy solutions (vacua) of the 5d Kaluza-Klein theory admit a non-trivial homotopy structure generated by certain Kaluza-Klein excitations. These vacua consist of an infinite set of homotopically different spacetimes denoted by M5(n)\mathcal{M}^{(n)}_5, among which M5(0)\mathcal{M}^{(0)}_5 and M5(1)\mathcal{M}^{(1)}_5 are especially identified as M4×S1M_{4} \times S^{1} and M5M_5, the ground states of the 5d Kaluza-Klein theory and the 5d general relativity, respectively (where MkM_k represents the kk-dimensional Minkowski space).Comment: 8 page

    Arctic-North Pacific Coupled Impacts on the Late Autumn Cold in North America

    Get PDF
    The Pacific Decadal Oscillation (PDO) is known to bring an anomalously cold (warm) period to southeastern (northwestern) North America during the cold season of its positive phase through a Rossby wave linkage. This study provides evidence that the remote connection between the North Pacific and the downstream temperature over central North America is strengthened by the warm arctic conditions over the Chukchi and East Siberian Sea, especially in the late autumn season. The modulation effect of the Arctic manifests itself as an altered Rossby wave response to a transient vorticity forcing that results from an equatorward storm track shift, which is induced collaboratively by the PDO and the warm Arctic. This observational finding is supported by two independent modeling experiments: 1) an idealized coupled GCM experiment being nudged toward the warm arctic surface condition and 2) a simple stationary wave model (SWM) experiment forced by transient eddy forcing

    Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells

    Get PDF
    AbstractPiwi-interacting RNAs (piRNAs) are 26–31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies

    Bedside prediction of right subclavian venous catheter insertion length

    Get PDF
    AbstractBackground and objectiveThe present study aimed to evaluate whether right subclavian vein (SCV) catheter insertion depth can be predicted reliably by the distances from the SCV insertion site to the ipsilateral clavicular notch directly (denoted as I-IC), via the top of the SCV arch, or via the clavicle (denoted as I-T-IC and I-C-IC, respectively).MethodIn total, 70 SCV catheterizations were studied. The I-IC, I-T-IC, and I-C-IC distances in each case were measured after ultrasound-guided SCV catheter insertion. The actual length of the catheter between the insertion site and the ipsilateral clavicular notch, denoted as L, was calculated by using chest X-ray.ResultsL differed from the I-T-IC, I-C-IC, and I-IC distances by 0.14±0.53, 2.19±1.17, and −0.45±0.68cm, respectively. The mean I-T-IC distance was the most similar to the mean L (intraclass correlation coefficient=0.89). The mean I-IC was significantly shorter than L, while the mean I-C-IC was significantly longer. Linear regression analysis provided the following formula: Predicted SCV catheter insertion length (cm)=−0.037+0.036×Height (cm)+0.903×I-T-IC (cm) (adjusted r2=0.64).ConclusionThe I-T-IC distance may be a reliable bedside predictor of the optimal insertion length for a right SCV cannulation
    • …
    corecore