409 research outputs found

    A New pH-ISFET Based Dissolved Oxygen Sensor

    Get PDF
    A new dissolved oxygen sensor based on pH-ISFET has been discussed. A platinum working electrode surrounding a pH-sensing gate of the pH-ISFET electrolyzes dissolved oxygen, resulting in a corresponding pH change. The pH-ISFET can determine dissolved oxygen concentration through detecting this pH change. --Summar

    Metformin Decreases 2-HG Production through the MYC-PHGDH Pathway in Suppressing Breast Cancer Cell Proliferation

    Get PDF
    The biguanide drug metformin has been widely used for the treatment of type 2 diabetes, and there is evidence supporting the anticancer effect of metformin despite some controversy. Here, we report the growth inhibitory activity of metformin in the breast cancer (MCF-7) cells, both in vitro and in vivo, and the associated metabolic changes. In particular, a decrease in a well-known oncometabolite 2-hydroxyglutarate (2-HG) was discovered by a metabolomics approach. The decrease in 2-HG by metformin was accompanied by the reduction in histone methylation, consistent with the known tumorigenic mechanism of 2-HG. The relevance of 2-HG inhibition in breast cancer was also supported by a higher level of 2-HG in human breast cancer tissues. Genetic knockdown of PHGDH identified the PHGDH pathway as the producer of 2-HG in the MCF-7 cells that do not carry isocitrate dehydrogenase 1 and 2 (IDH1/IDH2) mutations, the conventional producer of 2-HG. We also showed that metformin's inhibitory effect on the PHGDH-2HG axis may occur through the regulation of the AMPK-MYC pathway. Overall, our results provide an explanation for the coherent pathway from complex I inhibition to epigenetic changes for metformin's anticancer effect.Peer reviewe

    Environmental considerations of plastic behaviors for automobile applications

    Get PDF
    AbstractIt is well known fact that the thermo-mechanical behaviors of polymeric materials are strongly influenced by environmental factors, and, for automobiles, the mechanical properties of interior plastic structures are noticeably changed by being repeatedly exposed to environments such as sun light and rains. As the properties change, mechanical fits such as fasteners and clips in automobiles lose their tightness, creating unexpected noises. To consider Buzz, Squeak and Rattle (BSR) from initial stage of the interior design, it is very important to obtain, analyze and understand the structural behaviors of the materials under environmental changes as well as time. In this report, the mechanical property changes of the plastics for automobiles are measured to investigate the temperature and humidity effects. The samples are undergone different temperature and humidity conditions, and regularly taken out to measure the thermo-mechanical properties. The data are compared with the original samples, and analyzed for the properties change. Viscoelastic characteristics such as glass transition temperatures and storage/loss modulus were also investigate

    Untargeted metabolomics analysis of rat hippocampus subjected to sleep fragmentation

    Get PDF
    Sleep fragmentation (SF) commonly occurs in several pathologic conditions and is especially associated with impairments of hippocampus-dependent neurocognitive functions. Although the effects of SF on hippocampus in terms of protein or gene levels were examined in several studies, the impact of SF at the metabolite level has not been investigated. Thus, in this study, the differentially expressed large-scale metabolite profiles of hippocampus in a rat model of SF were investigated using untargeted metabolomics approaches. Forty-eight rats were divided into the following 4 groups: 4-day SF group, 4-day exercise control (EC) group, 15-day SF group, and 15-day EC group (nā€‰=ā€‰12, each). SF was accomplished by forced exercise using a walking wheel system with 30-s on/90-s off cycles, and EC condition was set at 10-min on/30-min off. The metabolite profiles of rat hippocampi in the SF and EC groups were analyzed using liquid chromatography/mass spectrometry. Multivariate analysis revealed distinctive metabolic profiles and marker signals between the SF and corresponding EC groups. Metabolic changes were significant only in the 15-day SF group. In the 15-day SF group, L-tryptophan, myristoylcarnitine, and palmitoylcarnitine were significantly increased, while adenosine monophosphate, hypoxanthine, L-glutamate, L-aspartate, L-methionine, and glycerophosphocholine were decreased compared to the EC group. The alanine, aspartate, and glutamate metabolism pathway was observed as the common key pathway in the 15-day SF groups. The results from this untargeted metabolomics study provide a perspective on metabolic impact of SF on the hippocampus.Peer reviewe

    Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

    Get PDF
    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Whl(-1) at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.

    Predictors of poor prognosis in patients with heat stroke

    Get PDF
    Objective The predictors of poor prognosis in heat stroke (HS) remain unknown. This study investigated the predictive factors of poor prognosis in patients with HS. Methods Data were obtained and analyzed from the health records of patients diagnosed with heat illness at Ajou university hospital between January 2008 and December 2017. Univariate and multivariate analyses were performed to identify the independent predictors of poor prognosis. Results Thirty-six patients (median age, 54.5 years; 33 men) were included in the study. Poor prognosis was identified in 27.8% of the study population (10 patients). The levels of S100B protein, troponin I, creatinine, alanine aminotransferase, and serum lactate were statistically significant in the univariate analysis. Multiple regression analysis revealed that poor prognosis was significantly associated with an increased S100B protein level (odds ratio, 177.37; 95% confidence interval, 2.59 to 12,143.80; P=0.016). The S100B protein cut-off level for predicting poor prognosis was 0.610 Ī¼g/L (area under the curve, 0.906; 95% confidence interval, 0.00 to 1.00), with 86% sensitivity and 86% specificity. Conclusion An increased S100B protein level on emergency department admission is an independent prognostic factor of poor prognosis in patients with HS. Elevation of the S100B protein level represents a potential target for specific and prompt therapies in these patients

    Long-Term Glycaemic Durability of Early Combination Therapy Strategy versus Metformin Monotherapy in Korean Patients with Newly Diagnosed Type 2 Diabetes Mellitus

    Get PDF
    We assessed the glycaemic durability with early combination (EC; vildagliptin+metformin [MET], n=22) versus MET monotherapy (n=17), among newly-diagnosed type 2 diabetes mellitus (T2DM) enrolled (between 2012 and 2014) in the VERIFY study from Korea (n=39). Primary endpoint was time to initial treatment failure (TF) (glycosylated hemoglobin [HbA1c]>= 7.0% at two consecutive scheduled visits after randomization [end of period 1]). Time to second TF was assessed when both groups were receiving and failing on the combination (end of period 2). With EC the risk of initial TF significantly reduced by 78% compared to MET (n=3 [15%] vs. n=10 [58.7%], P=0.0228). No secondary TF occurred in EC group versus five patients (29.4%) in MET. Patients receiving EC treatment achieved consistently lower HbA1c levels. Both treatment approaches were well tolerated with no hypoglycaemic events. In Korean patients with newly diagnosed T2DM, EC treatment significantly and consistently improved the long-term glycaemic durability as compared with MET.Peer reviewe
    • ā€¦
    corecore