5,943 research outputs found

    Organizational culture and knowledge management success at project and organizational levels in contracting firms

    Get PDF
    Author name used in this publication: Patrick S. W. Fong2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Preparation of bioactive surface via gel oxidation on titanium for biomedical application (hip joint replacement)

    Get PDF
    Titanium and its alloys are widely used as implant in biomedical applications. They have good mechanical and chemical properties, biocompatibility and biointegration with human body, but they have no ability to bond directly to natural bone. Therefore, alkali and heat treatments (gel oxidation) were introduced to improve the bioactivity of titanium by forming a mixture of sodium titanate and rutile on the surface of titanium. This method enables titanium to possess a bioactive surface which is essential to induce the apatite formation. This study aims to investigate the effects of alkali, sodium removal and heat treatments on in vitro bioactivity of titanium. UV light irradiation was used to study the effect on in vitro bioactivity of titanium. Alkalitreated titanium subjected to heat treatment in air have shown better overall in vitro performance than those treated in argon atmosphere. Therefore, the sodium removal treatment (dilute hydrochloric acid (HCl) treatment) was introduced to convert sodium titanate into anatase to improve the bioactivity of titanium treated in argon atmosphere. Thus, four samples (AT-0.5-HT500R, AT-0.5-HT600R, AT-5-HT500R and AT-5- HT600R) with different ratios of anatase to rutile were produced by varying the concentration of HCl acid treatment and heating temperature in argon atmosphere. It was found that the incorporation of sodium removal treatment has reduced two times the duration of apatite formation as compared with the conventional alkali and heat treatments. In order to further enhance the bioactivity, these samples were subjected to six different conditions of ultraviolet light irradiation and followed by in vitro bioactivity test. As a result, AT-5-HT500R (82.2% anatase and 17.8% rutile) was proven to deliver the best performance. It was confirmed that UV light irradiation enhances the bioactivity by removing hydrocarbon, inducing superhydrophilicity and forming OH groups. It was discovered that the duration of apatite formation was shortened to 7 days. Furthermore, the continuous UVA irradiation during in vitro test resulted in the acceleration of bonelike apatite formation in 3 days. It can be concluded that the sodium removal treatment and UV light irradiation give very significant impact to the formation of bonelike apatite on the titanium surfaces for biomedical applications

    An Argument Against the Arbitrary Acceptance of Guilty Pleas as Statements Against Interest

    Get PDF

    Peak effect in twinned superconductors

    Get PDF
    A sharp maximum in the critical current JcJ_c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low and high temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments.Comment: 4 pages, revtex 3.0, no figure

    Everyone loses when the values of employees clash with those of the firm

    Get PDF
    When employees suppress their values they risk burnout and firms' productivity falls, writes Chia-Huei W

    Reconstructing ice-sheet accumulation rates at ridge B, East Antarctica

    Get PDF
    Understanding how ice sheets responded to past climate change is fundamental to forecasting how they will respond in the future. Numerical models calculating the evolution of ice sheets depend upon accumulation data, which are principally available from ice cores. Here, we calculate past rates of ice accumulation using internal layering. The englacial structure of the East Antarctic ice divide at ridge B is extracted from airborne ice-penetrating radar. The isochronous surfaces are dated at their intersection with the Vostok ice-core site, where the depth–age relationship is known. The dated isochrons are used as input to a one-dimensional ice-flow model to investigate the spatial accumulation distribution. The calculations show that ice-accumulation rates generally increase from Vostok lake towards ridge B. The western flank of the ice divide experiences markedly more accumulation than in the east. Further, ice accumulation increases northwards along the ice divide. The results also show the variability of accumulation in time and space around the ridge B ice divide over the last 124 000 years
    corecore