7,017 research outputs found

    An increase in TcT_c under hydrostatic pressure in the superconducting doped topological insulator Nb0.25_{0.25}Bi2_2Se3_3

    Full text link
    We report an unexpected positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator \NBS via dcdc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues \CBS and \SBS where smooth suppression of TcT_c is observed. Our results are consistent with recent Ginzburg-Landau theory predictions of a pressure-induced enhancement of TcT_c in the nematic multicomponent EuE_u state proposed to explain observations of rotational symmetry breaking in doped Bi2_2Se3_3 superconductors.Comment: 5 pages, 5 figure

    Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    Get PDF
    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7±0.6)×10−6I_{\mu} = (5.7 \pm 0.6) \times 10^{-6} cm−2^{-2}s−1^{-1}sr−1^{-1}. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19±0.08(stat)±0.21(syst))×10−4Y_{n} = (1.19 \pm 0.08 (stat) \pm 0.21 (syst)) \times 10^{-4} neutrons/(μ⋅\mu\cdotg⋅\cdotcm−2^{-2}). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩0.76±0.03\left\langle E_{\mu} \right\rangle^{0.76 \pm 0.03} for liquid-scintillator targets.Comment: 14 pages, 17 figures, 3 table

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure
    • …
    corecore