348 research outputs found

    Validating a novel score based on interaction between ACLF grade and MELD score to predict waitlist mortality

    Get PDF
    Background and Aim: Among candidates listed for liver transplant (LT), MELD score may not capture acute on chronic liver failure (ACLF) severity. Data on interaction between ACLF and MELD score in predicting waitlist (WL) mortality are scanty. / Methods: UNOS database (01/2002 to 06/2018) on LT listings for adults with cirrhosis and ACLF (without HCC) was analyzed. ACLF grades 1, 2, 3a, and 3b- were defined using modified EASL-CLIF criteria. / Results: Of 18,416 candidates with ACLF at listing (mean age 54 years, 69% males, 63% Caucasians), 90-d WL mortality (patient death or being too sick for LT) was 21.6% (18%, 20%, 25%, and 39% for ACLF grades 1, 2, 3a, and 3b respectively). Fine and Gray regression model identified interaction between MELD and ACLF grade, with higher impact of ACLF at lower MELD score. Other variables included candidate’s age, gender, liver disease etiology, listing MELD, ACLF grade, obesity, and performance status. A score developed using parameter estimates from the interaction model on the derivation cohort (N=9181) stratified the validation cohort (N=9235) to four quartiles Q1 (score 15.50). WL mortality increased with each quartile from 13%, 18%, 23%, and 36% respectively. Observed versus expected deciles on WL mortality in validation cohort showed good calibration (goodness of fit P=0.98) and correlation (R=0.99). / Conclusion: Among selected candidates who are in ACLF at listing, MELD score and ACLF interact in predicting cumulative risk of 90-d WL mortality, with higher impact of ACLF grade at lower listing MELD score. Validating these findings in large prospective studies will support to factor in both MELD and ACLF in prioritizing transplant candidates and allocation of liver grafts

    Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 745–761, doi:10.1002/2016JC012326.Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ∼8.5, significantly elevated above that of the surrounding open ocean (∼8.0–8.1) as a consequence of daytime NEP (up to 112 mmol C m−2 h−1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m−2 d−1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m−2 h−1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.NSF Grant Number: 12205292017-07-3

    Efficacy of Sofosbuvir, Velpatasvir, and GS-9857 in Patients With Hepatitis C Virus Genotype 2, 3, 4, or 6 Infections in an Open-Label, Phase 2 Trial

    Get PDF
    © 2016 AGA Institute Background & Aims Studies are needed to determine the optimal regimen for patients with chronic hepatitis C virus (HCV) genotype 2, 3, 4, or 6 infections whose prior course of antiviral therapy has failed, and the feasibility of shortening treatment duration. We performed a phase 2 study to determine the efficacy and safety of the combination of the nucleotide polymerase inhibitor sofosbuvir, the NS5A inhibitor velpatasvir, and the NS3/4A protease inhibitor GS-9857 in these patients. Methods We performed a multicenter, open-label trial at 32 sites in the United States and 2 sites in New Zealand from March 3, 2015 to April 27, 2015. Our study included 128 treatment-naïve and treatment-experienced patients (1 with HCV genotype 1b; 33 with HCV genotype 2; 74 with HCV genotype 3; 17 with genotype HCV 4; and 3 with HCV genotype 6), with or without compensated cirrhosis. All patients received sofosbuvir-velpatasvir (400 mg/100 mg fixed-dose combination tablet) and GS-9857 (100 mg) once daily for 6–12 weeks. The primary end point was sustained virologic response 12 weeks after treatment (SVR12). Results After 6 weeks of treatment, SVR12s were achieved by 88% of treatment-naïve patients without cirrhosis (29 of 33; 95% confidence interval, 72%–97%). After 8 weeks of treatment, SVR12s were achieved by 93% of treatment-naïve patients with cirrhosis (28 of 30; 95% CI, 78%–99%). After 12 weeks of treatment, SVR12s were achieved by all treatment-experienced patients without cirrhosis (36 of 36; 95% CI, 90%–100%) and 97% of treatment-experienced patients with cirrhosis (28 of 29; 95% CI, 82%–100%). The most common adverse events were headache, diarrhea, fatigue, and nausea. Three patients (1%) discontinued treatment due to adverse events. Conclusions In a phase 2 open-label trial, we found sofosbuvir-velpatasvir plus GS-9857 (8 weeks in treatment-naïve patients or 12 weeks in treatment-experienced patients) to be safe and effective for patients with HCV genotype 2, 3, 4, or 6 infections, with or without compensated cirrhosis. ClinicalTrials.gov ID: NCT02378961

    Quantum computation based on d-level cluster states

    Full text link
    The concept of qudit (a d-level system) cluster state is proposed by generalizing the qubit cluster state (Phys. Rev. Lett. \textbf{86}, 910 (2001)) according to the finite dimensional representations of quantum plane algebra. We demonstrate their quantum correlations and prove a theorem which guarantees the availability of the qudit cluster states in quantum computation. We explicitly construct the network to show the universality of the one-way computer based on the defined qudit cluster states and single-qudit measurement. And the corresponding protocol of implementing one-way quantum computer can be suggested with the high dimensional "Ising" model which can be found in many magnetic systems.Comment: Revtex4, 15 pages, 3 eps figure

    Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms.

    Get PDF
    Background: Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results: We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions: We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss
    corecore