5 research outputs found

    Structural and electrical properties of ceramic Li-ion conductors based on Li1.3_{1.3}Al0.3_{0.3}Ti1.7_{1.7}(PO4_4)3_3-LiF

    Full text link
    The work presents the investigations of Li1.3Al0.3Ti1.7(PO4)3-xLiF Li-ion conducting ceramics with 0 < x < 0.3 by means of X-ray diffractometry (XRD), 7Li, 19F, 27Al and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy, thermogravimetry (TG), scanning electron microscopy (SEM), impedance spectroscopy (IS) and density method. It has been shown that the total ionic conductivity of both as-prepared and ceramic Li1.3Al0.3Ti1.7(PO4)3 is low due to a grain boundary phase exhibiting high electrical resistance. This phase consists mainly of berlinite crystalline phase as well as some amorphous phase containing Al3+ ions. The electrically resistant phases of the grain boundary decompose during sintering with LiF additive. The processes leading to microstructure changes and their effect on the ionic properties of the materials are discussed in the frame of the brick layer model (BLM). The highest total ionic conductivity at room temperature was measured for LATP-0.1LiF ceramic sintered at 800{\deg}C and was equal to {\sigma}tot = 1.1 x 10-4 Scm-1

    Impact of Li2.9_{2.9}B0.9_{0.9}S0.1_{0.1}O3.1_{3.1} glass additive on the structure and electrical properties of the LATP-based ceramics

    Full text link
    The existing solid electrolytes for lithium ion batteries suffer from low total ionic conductivity, which restricts its usefulness for the lithium-ion battery technology. Among them, the NASICON-based materials, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP) exhibit low total ionic conductivity due to highly resistant grain boundary phase. One of the possible approaches to efficiently enhance their total ionic conductivity is the formation of a composite material. Herein, the Li2.9B0.9S0.1O3.1 glass, called LBSO hereafter, was chosen as an additive material to improve the ionic properties of the ceramic Li1.3Al0.3Ti1.7(PO4)3 base material. The properties of this Li1.3Al0.3Ti1.7(PO4)3-xLi2.9B0.9S0.1O3.1 (0 < x < 0.3) system have been studied by means of high temperature X-ray diffractometry (HTXRD), 7Li, 11B, 27Al and 31P magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), thermogravimetry (TG), scanning electron microscopy (SEM), impedance spectroscopy (IS) and density methods. We show here that the introduction of the foreign LBSO phase enhances their electric properties. This study reveals several interesting correlations between the apparent density, the microstructure, the composition, the sintering temperature and the ionic conductivity. Moreover, the electrical properties of the composites will be discussed in the terms of the brick-layer model (BLM). The highest value of {\sigma}tot = 1.5 x 10-4 Scm-1 has been obtained for LATP-0.1LBSO material sintered at 800{\deg}C
    corecore