204 research outputs found

    LINGUISTICA COGNITIVA NELLA CULTURA DEL BERE: METONIMIA SULLE ETICHETTE DEL VINO IN ITALIA E IN POLONIA

    Get PDF
    La scelta dell’etichetta come oggetto del presente contributo è dovuta inannzitutto alla sua diffusione e alla sua accessibilità rispetto ad altri generi del discorso enologico. L’articolo studia la presenza delle metonimie intese come figure concettuali sulle etichette polacche e italiane. Si mettono a confronto due contesti culturali marcatamente diversi: l’Italia, uno dei primi paesi al mondo per produzione del vino, e la Polonia, il paese il cui settore enologico è ancora in via di sviluppo. Lo studio si propone di individuare i modelli cognitivi idealizzati (ing. Idealized Cognitive Models) in cui si realizzano le metonimie sulle etichette polacche e italiane mettendo in rilievo le differenze a livello quantitativo e qualitativo. Il quadro teorico-metodologico della ricerca si fonda sul contributo di Radden e Kövecses (1999) e di Seto (1999). Sone state prese in considerazione quattro varianti di metonimie: materiale per oggetto, oggetto per proprietà, causa per effetto e organo di percezione per percezione. Dall’analisi dei dati raccolti, la metonimia risulta essere un fenomeno più frequente nelle etichette polacche. Nel corpus italiano le metonimie più attestate sono quelle che operano entro un modello cognitivo idealizzato (ICM) di costituzione e un ICM di corpo umano. Nei testi polacchi invece le metonimie più ricorrenti appartengono a un ICM di proprietà e a un ICM di causalità.   Cognitive linguistics in the culture of drinking: metonymy on wine labels in Italy and in Poland The choice of the wine label as the subject of this article is above all due to its popularity and accessibility comparing to other genres of wine discourse. The article studies the presence of metonymy as a conceptual figure on Polish and Italian wine labels. I compare two markedly different cultural contexts: Italy, one of the first countries in the world as far as wine production is concerned, and Poland, where the wine sector is still growing. The study aims to identify the idealized cognitive models (ICM) that give space to metonymies on Polish and Italian wine labels, indicating the differences in quantitative and qualitative terms. The theoretical-methodological framework of this research is based on the work of Radden e Kövecses (1999) and Seto (1999). I take into consideration four variants of metonymy: material for object, object for property, cause for effect and organ of perception for perception. Data analysis proves that metonymy is a more frequent phenomenon on Polish wine labels. In Italian corpus, metonymies with the highest number of attestations fall within Constitution ICM and Human Body ICM. In Polish texts metonymies that belong to Property ICM and Causation ICM prevail

    Identification of proteins in laser-microdissected small cell numbers by SELDI-TOF and Tandem MS

    Get PDF
    BACKGROUND: Laser microdissection allows precise isolation of specific cell types and compartments from complex tissues. To analyse proteins from small cell numbers, we combine laser-microdissection and manipulation (LMM) with mass spectrometry techniques. RESULTS: Hemalaun stained mouse lung sections were used to isolate 500–2,000 cells, enough material for complex protein profiles by SELDI-TOF MS (surface enhanced laser desorption and ionization/time of flight mass spectrometry), employing different chromatographic ProteinChip(® )Arrays. Initially, to establish the principle, we identified specific protein peaks from 20,000 laser-microdissected cells, combining column chromatography, SDS-PAGE, tryptic digestion, SELDI technology and Tandem MS/MS using a ProteinChip(® )Tandem MS Interface. Secondly, our aim was to reduce the labour requirements of microdissecting several thousand cells. Therefore, we first defined target proteins in a few microdissected cells, then recovered in whole tissue section homogenates from the same lung and applied to these analytical techniques. Both approaches resulted in a successful identification of the selected peaks. CONCLUSION: Laser-microdissection may thus be combined with SELDI-TOF MS for generation of protein marker profiles in a cell-type- or compartment-specific manner in complex tissues, linked with mass fingerprinting and peptide sequencing by Tandem MS/MS for definite characterization

    Fra2 Overexpression in Mice Leads to Non-allergic Asthma Development in an IL-13 Dependent Manner

    Get PDF
    Background: Asthma is a complex chronic inflammatory disease characterised by airway inflammation, remodelling and hyperresponsiveness (AHR). Members of the AP-1 transcription factor family play important roles in the activation of the immune system and the control of cellular responses; however, their role in the development of asthma has not been well studied. We aimed to investigate the role of the lesser known AP-1 family member, Fra2 in experimental asthma.Methods: Phenotypic characterisation and gene expression profiling was performed on Fra2 (TG) overexpressing and wild-type mice. The efficacy of therapeutic interventions in regulating the Fra2 phenotype was determined.Results: Transcriptional profiling of TG mice revealed a high abundance of regulated genes associated with airway remodelling, inflammation and mucus production. A concomitant increase in peribronchial collagen deposition, smooth muscle thickening and mucus production was observed. TG mice possessed increased inflammatory infiltration in the lung, predominantly consisting of eosinophils and T-cells and elevated expression of Th2 cytokines and eotaxin. Furthermore, TG mice possessed severe AHR in response to increasing doses of methacholine. Glucocorticoid treatment led to a partial improvement of the asthma phenotype, whereas blockade of IL-13 via neutralising antibodies ameliorated AHR and mucus production, but had no effect on collagen deposition.Conclusion: We here describe a novel model for non-allergic asthma that does not require the application of exogenous allergens, which mimics several key features of the disease, such as airway inflammation, remodelling and hyperresponsiveness. Fra2 may represent a key molecule coordinating multiple aspects of asthma pathogenesis

    Basement membrane product, endostatin, as a link between inflammation, coagulation and vascular permeability in COVID-19 and non-COVID-19 acute respiratory distress syndrome

    Get PDF
    BackgroundImmune cell recruitment, endothelial cell barrier disruption, and platelet activation are hallmarks of lung injuries caused by COVID-19 or other insults which can result in acute respiratory distress syndrome (ARDS). Basement membrane (BM) disruption is commonly observed in ARDS, however, the role of newly generated bioactive BM fragments is mostly unknown. Here, we investigate the role of endostatin, a fragment of the BM protein collagen XVIIIα1, on ARDS associated cellular functions such as neutrophil recruitment, endothelial cell barrier integrity, and platelet aggregation in vitro.MethodsIn our study we analyzed endostatin in plasma and post-mortem lung specimens of patients with COVID-19 and non-COVID-19 ARDS. Functionally, we investigated the effect of endostatin on neutrophil activation and migration, platelet aggregation, and endothelial barrier function in vitro. Additionally, we performed correlation analysis for endostatin and other critical plasma parameters.ResultsWe observed increased plasma levels of endostatin in our COVID-19 and non-COVID-19 ARDS cohort. Immunohistochemical staining of ARDS lung sections depicted BM disruption, alongside immunoreactivity for endostatin in proximity to immune cells, endothelial cells, and fibrinous clots. Functionally, endostatin enhanced the activity of neutrophils, and platelets, and the thrombin-induced microvascular barrier disruption. Finally, we showed a positive correlation of endostatin with soluble disease markers VE-Cadherin, c-reactive protein (CRP), fibrinogen, and interleukin (IL)-6 in our COVID-19 cohort.ConclusionThe cumulative effects of endostatin on propagating neutrophil chemotaxis, platelet aggregation, and endothelial cell barrier disruption may suggest endostatin as a link between those cellular events in ARDS pathology

    Basement membrane product, endostatin, as a link between inflammation, coagulation and vascular permeability in COVID-19 and non-COVID-19 acute respiratory distress syndrome

    Full text link
    Background: Immune cell recruitment, endothelial cell barrier disruption, and platelet activation are hallmarks of lung injuries caused by COVID-19 or other insults which can result in acute respiratory distress syndrome (ARDS). Basement membrane (BM) disruption is commonly observed in ARDS, however, the role of newly generated bioactive BM fragments is mostly unknown. Here, we investigate the role of endostatin, a fragment of the BM protein collagen XVIIIα1, on ARDS associated cellular functions such as neutrophil recruitment, endothelial cell barrier integrity, and platelet aggregation in vitro. Methods: In our study we analyzed endostatin in plasma and post-mortem lung specimens of patients with COVID-19 and non-COVID-19 ARDS. Functionally, we investigated the effect of endostatin on neutrophil activation and migration, platelet aggregation, and endothelial barrier function in vitro. Additionally, we performed correlation analysis for endostatin and other critical plasma parameters. Results: We observed increased plasma levels of endostatin in our COVID-19 and non-COVID-19 ARDS cohort. Immunohistochemical staining of ARDS lung sections depicted BM disruption, alongside immunoreactivity for endostatin in proximity to immune cells, endothelial cells, and fibrinous clots. Functionally, endostatin enhanced the activity of neutrophils, and platelets, and the thrombin-induced microvascular barrier disruption. Finally, we showed a positive correlation of endostatin with soluble disease markers VE-Cadherin, c-reactive protein (CRP), fibrinogen, and interleukin (IL)-6 in our COVID-19 cohort. Conclusion: The cumulative effects of endostatin on propagating neutrophil chemotaxis, platelet aggregation, and endothelial cell barrier disruption may suggest endostatin as a link between those cellular events in ARDS pathology

    Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular Tracers in Human Lung Cell Lines

    Get PDF
    Secondary organic aerosol (SOA) is a major component of airborne fine particulate matter (PM2.5) that contributes to adverse human health effects upon inhalation. Atmospheric ozonolysis of α-pinene, an abundantly emitted monoterpene from terrestrial vegetation, leads to significant global SOA formation; however, its impact on pulmonary pathophysiology remains uncertain. In this study, we quantified an increasing concentration response of three well-established α-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetricarboxylic acids) and a full mixture of α-pinene SOA in A549 (alveolar epithelial carcinoma) and BEAS-2B (bronchial epithelial normal) lung cell lines. The three aforementioned tracers contributed ∼57% of the α-pinene SOA mass under our experimental conditions. Cellular proliferation, cell viability, and oxidative stress were assessed as toxicological end points. The three α-pinene SOA molecular tracers had insignificant responses in both cell types when compared with the α-pinene SOA (up to 200 μg mL-1). BEAS-2B cells exposed to 200 μg mL-1 of α-pinene SOA decreased cellular proliferation to ∼70% and 44% at 24- and 48-h post exposure, respectively; no changes in A549 cells were observed. The inhibitory concentration-50 (IC50) in BEAS-2B cells was found to be 912 and 230 μg mL-1 at 24 and 48 h, respectively. An approximate 4-fold increase in cellular oxidative stress was observed in BEAS-2B cells when compared with untreated cells, suggesting that reactive oxygen species (ROS) buildup resulted in the downstream cytotoxicity following 24 h of exposure to α-pinene SOA. Organic hydroperoxides that were identified in the α-pinene SOA samples likely contributed to the ROS and cytotoxicity. This study identifies the potential components of α-pinene SOA that likely modulate the oxidative stress response within lung cells and highlights the need to carry out chronic exposure studies on α-pinene SOA to elucidate its long-term inhalation exposure effects. © 2021 American Chemical Society

    Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells

    Get PDF
    Nitrophenols (NPs) are hazardous pollutants found in various environmental matrices, including ambient fine particulate matter (PM2.5), agricultural residues, rainwater, wildfires, and industrial wastes. This study showed for the first time the effect of three pure nitrophenols and their mixture on human lung cells to provide basic understanding of the NP influence on cell elements and processes. We identified NPs in ambient PM2.5 and secondary organic aerosol (SOA) particles generated from the photooxidation of monocyclic aromatic hydrocarbons in the U.S. EPA smog chamber. We assessed the toxicity of identified NPs and their equimolar mixture in normal bronchial epithelial (BEAS-2B) and alveolar epithelial cancer (A549) lung cell lines. The inhibitory concentration-50 (IC50) values were highest and lowest in BEAS-2B cells treated with 2-nitrophenol (2NP) and 4-nitrophenol (4NP), respectively, at 24 h of exposure. The lactate dehydrogenase (LDH) assay showed that 4NP, the most abundant NP we identified in PM2.5, was the most cytotoxic NP examined in both cell lines. The annexin-V/fluorescein isothiocyanate (FITC) analysis showed that the populations of late apoptotic/necrotic BEAS-2B and A549 cells exposed to 3NP, 4NP, and NP equimolar mixture increased between 24 and 48 h. Cellular reactive oxygen species (ROS) buildup led to cellular death post exposure to 3NP, 4NP and the NP mixtures, while 2NP induced the lowest ROS buildup. An increased mitochondrial ROS signal following NP exposure occurred only in BEAS-2B cells. The tetramethylrhodamine, methyl ester, perchlorate (TMRM) assay showed that exposed cells exhibited collapse of the mitochondrial membrane potential. TMRM signals decreased significantly only in BEAS-2B cells, and most strongly with 4NP exposures. Our results suggest that acute atmospheric exposures to NPs may be toxic at high concentrations, but not at ambient PM2.5 concentrations. Further chronic studies with NP and NP-containing PM2.5 are warranted to assess their contribution to lung pathologies
    • …
    corecore