5 research outputs found

    Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development

    Get PDF
    In quite a few diseases, drug resistance due to target variability poses a serious problem in pharmacotherapy. This is certainly true for HIV, and hence, it is often unknown which drug is best to use or to develop against an individual HIV strain. In this work we applied ‘proteochemometric’ modeling of HIV Non-Nucleoside Reverse Transcriptase (NNRTI) inhibitors to support preclinical development by predicting compound performance on multiple mutants in the lead selection stage. Proteochemometric models are based on both small molecule and target properties and can thus capture multi-target activity relationships simultaneously, the targets in this case being a set of 14 HIV Reverse Transcriptase (RT) mutants. We validated our model by experimentally confirming model predictions for 317 untested compound – mutant pairs, with a prediction error comparable with assay variability (RMSE 0.62). Furthermore, dependent on the similarity of a new mutant to the training set, we could predict with high accuracy which compound will be most effective on a sequence with a previously unknown genotype. Hence, our models allow the evaluation of compound performance on untested sequences and the selection of the most promising leads for further preclinical research. The modeling concept is likely to be applicable also to other target families with genetic variability like other viruses or bacteria, or with similar orthologs like GPCRs

    Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor

    No full text
    Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure–activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors. Oral treatment of neonatal lambs with JNJ-53718678, or with an equally active close analog, efficiently inhibits established acute lower respiratory tract infection in the animals, even when treatment is delayed until external signs of respiratory syncytial virus illness have become visible. Together, these data suggest that JNJ-53718678 is a promising candidate for further development as a potential therapeutic in patients at risk to develop respiratory syncytial virus acute lower respiratory tract infection.This article is published as Roymans, Dirk, Sarhad S. Alnajjar, Michael B. Battles, Panchan Sitthicharoenchai, Polina Furmanova-Hollenstein, Peter Rigaux, Joke Van den Berg et al. "Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor." Nature Communications 8, no. 1 (2017): 167. DOI: 10.1038/s41467-017-00170-x. Copyright 2017 The Author(s). Attribution 4.0 International (CC BY 4.0). Posted with permission

    JNJ-7184, a respiratory syncytial virus inhibitor targeting the connector domain of the viral polymerase

    No full text
    Abstract: Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology
    corecore