30 research outputs found

    Genetic and Functional Analyses of Virulence Potential of an Escherichia coli O157:H7 Strain Isolated From Super-Shedder Cattle

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 is an enteric pathogen that causes life-threatening disease in humans, with cattle being major natural reservoirs. A group of STEC O157:H7 with a dramatic combination of high virulence potentials and super-shedder bovine origin have been isolated. Here, an STEC O157:H7 isolate, JEONG-1266, was analyzed by comparative genomics, stx genotyping, and phenotypic analyses. The phylogenetic typing and whole-genome comparison consistently showed that JEONG-1266 is genetically close to EC4115 (one of 2006 Spinach outbreak isolates) and SS17 (an isolate from super-shedder cattle) strains, all of which belong to lineage I/II and Clade 8. Both lineage I/II and Clade 8 are known to be mostly associated with clinical strains with high virulence and severe clinical symptoms. Further, JEONG-1266, like EC4115 and SS17, harbors stx2a/stx2c genes, and carries Stx-encoding prophages, specifically the φstx2a-γ subtype. Possession of the φstx2a-γ subtype of Stx-encoding prophages and production of Stx2a have been shown to be a key signature associated with hypervirulent STEC O157:H7 strains. In silico virulence typing elucidated JEONG- 1266, EC4115, and SS17 shared a highly conserved profile of key virulence genes at the nucleotide sequence level. Consistently, phenotypic data showed that JEONG-1266 expressed a high level of Stx2 toxins and had the full capacity of adhesion in vitro. Taken together, our study suggests that JEONG-1266 may represent an emerging STEC O157:H7 group, which are hypervirulent strains that originate from super-shedders, that can be a threat to food safety and public health

    Genomic and Virulence Characterization of Intrauterine Pathogenic Escherichia coli With Multi-Drug Resistance Isolated From Cow Uteri With Metritis

    Get PDF
    Metritis is a major disease in dairy cows causing animal death, decrease of birth rate, milk production, and economic loss. Antibiotic treatment is generally used to treat such disease but has a high failure rate of 23–35%. The reason for the treatment failure remains unclear, although antibiotic resistance is postulated as one of factors. Our study investigated the prevalence of extended spectrum β-lactamase (ESBL) producing bacteria in uterine samples of cows with metritis and characterized the isolated intrauterine pathogenic Escherichia coli (IUPEC) strains using whole genome sequencing. We found that the cows with metritis we examined had a high percentage of ESBL producing IUPEC with multi-drug resistance including ceftiofur which is commonly used for metritis treatment. The ESBL producing IUPEC strains harbored versatile antibiotic resistance genes conferring resistance against 29 antibiotic classes, suggesting that transmission of these bacteria to other animals and humans may lead to antibiotic treatment failure. Furthermore, these strains had strong adhesion and invasion activity, along with critical virulence factors, indicating that they may cause infectious diseases in not only the uterus, but also in other organs and hosts

    Transmission of antibiotic resistance at the wildlife-livestock interface

    Get PDF
    Antibiotic-resistant microorganisms (ARMs) are widespread in natural environments, animals (wildlife and livestock), and humans, which has reduced our capacity to control life threatening infectious disease. Yet, little is known about their transmission pathways, especially at the wildlife-livestock interface. This study investigated the potential transmission of ARMs and antibiotic resistance genes (ARGs) between cattle and wildlife by comparing gut microbiota and ARG profiles of feral swine (Sus scrofa), coyotes (Canis latrans), cattle (Bos taurus), and environmental microbiota. Unexpectedly, wild animals harbored more abundant ARMs and ARGs compared to grazing cattle. Gut microbiota of cattle was significantly more similar to that of feral swine captured within the cattle grazing area where the home range of both species overlapped substantially. In addition, ARMs against medically important antibiotics were more prevalent in wildlife than grazing cattle, suggesting that wildlife could be a source of ARMs colonization in livestock

    High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study

    Get PDF
    Although the over-use of antibiotics during food animal production is a potential driver of antimicrobial resistant microorganisms (ARMs), a high prevalence of cefotaxime resistant bacteria (CRB) has been observed in grazing animals raised without antibiotic supplementation. In this cross-sectional study, the prevalence and concentration of CRB in beef cattle on grazing farms were investigated. Fecal samples from the recto-anal junction of cattle (n = 840) and environmental samples (n = 258) were collected from 17 farms in North and Central Florida in the United States, and a survey of farm characteristics, animal husbandry practices, and antibiotic usage was conducted. CRB were detected in fecal samples from 47.4% of all cattle, with the prevalence ranging from 21.1 to 87.5% on farms, and significantly higher (P < 0.001) in calves compared to adult cows (54.1 vs. 41.8%). Environmental samples had a higher prevalence than fecal samples (P < 0.001), with CRB detected in 88.6% of water, 98.7% of soil, and 95.7% of forage samples. Compared to the concentration (log CFU/g) of CRB in fecal samples (2.95, 95% CI: 2.89, 3.02), the concentration of CRB was higher (P < 0.001) in soil and forage samples (5.37, 95% CI: 5.16, 5.57) and lower (P < 0.001) in water samples (1.08, 95% CI: 0.82, 1.36). Soil microbiota from farms with high prevalence of CRB clustered closer together and the proportion of Phylum Proteobacteria was higher on farms with high prevalence of CRB resistance. Large farming operations were associated with a 58% higher likelihood of CRB detection in fecal samples. Regular cleaning of drinking troughs and the addition of ionophores to feed were associated with CRB reduction in fecal samples. Taken together, the widespread of CRB into both cattle seldom treated with cephalosporin antibiotics and the surrounding environment suggests the environment is a natural source of antimicrobial resistance in beef cattle

    A genetic and virulence characterization of Brazilian strains of Mycoplasma hyopneumoniae

    Get PDF
    Mycoplasma hyopneumoniae (M. hyopneumoniae) is considered the primary causative agent of porcine enzootic pneumonia (EP), a chronic contagious respiratory disease that causes economic losses. Obtaining new pathogenic isolates and studying the genome and virulence factors are necessary. This study performed a complete sequencing analysis of two Brazilian strains, UFV01 and UFV02, aiming to characterize the isolates in terms of the virulence factors and sequence type. The complete genome analysis revealed the main virulence genes (mhp385, mhp271, MHP_RS03455, p102, p97, p216, MHP_RS00555, mhp107) and ST-123, the presence of three toxin-related genes (tlyC, PLDc_2 and hcnC), and some genetic groups specific to these two isolates. Subsequently, the pathogenicity of the isolates was evaluated via an experimental infection conducted in a swine model. The study was divided into three groups, namely a negative control group (n = 4) and two test groups (n = 8), totaling 20 animals. They were challenged at 35 days of age with 107 CCU (Color Changing Units) M. hyopneumoniae via the intratracheal route. The UFV01 group showed earlier and higher seroconversion (IgG) (100%), while only 50% of the UFV02 group seroconverted. The same trend was observed when analyzing the presence of IgA in the bronchoalveolar lavage fluid (BALF) at 35 days post-infection (dpi). The UFV01 group had a mean macroscopic lesion score of 11.75% at 35 dpi, while UFV02 had 3.125%. Microscopic lesions were more severe in the UFV01 group. Based on laryngeal swab samples evaluated by qPCR, and the detection began at 14 days. The UFV01 group showed 75% positivity at 14 dpi. The UFV02 group also started excreting at 14 dpi, with a positivity rate of 37.5%. The results indicate that the UFV01 isolate exhibits higher virulence than UFV02. These findings may aid in developing new vaccines and diagnostic kits and establishing experimental models for testing

    Genetic and Functional Analyses of Virulence Potential of an Escherichia coli O157:H7 Strain Isolated From Super-Shedder Cattle

    Get PDF
    Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 is an enteric pathogen that causes life-threatening disease in humans, with cattle being major natural reservoirs. A group of STEC O157:H7 with a dramatic combination of high virulence potentials and super-shedder bovine origin have been isolated. Here, an STEC O157:H7 isolate, JEONG-1266, was analyzed by comparative genomics, stx genotyping, and phenotypic analyses. The phylogenetic typing and whole-genome comparison consistently showed that JEONG-1266 is genetically close to EC4115 (one of 2006 Spinach outbreak isolates) and SS17 (an isolate from super-shedder cattle) strains, all of which belong to lineage I/II and Clade 8. Both lineage I/II and Clade 8 are known to be mostly associated with clinical strains with high virulence and severe clinical symptoms. Further, JEONG-1266, like EC4115 and SS17, harbors stx2a/stx2c genes, and carries Stx-encoding prophages, specifically the φstx2a-γ subtype. Possession of the φstx2a-γ subtype of Stx-encoding prophages and production of Stx2a have been shown to be a key signature associated with hypervirulent STEC O157:H7 strains. In silico virulence typing elucidated JEONG- 1266, EC4115, and SS17 shared a highly conserved profile of key virulence genes at the nucleotide sequence level. Consistently, phenotypic data showed that JEONG-1266 expressed a high level of Stx2 toxins and had the full capacity of adhesion in vitro. Taken together, our study suggests that JEONG-1266 may represent an emerging STEC O157:H7 group, which are hypervirulent strains that originate from super-shedders, that can be a threat to food safety and public health

    Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle.

    No full text
    Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities

    The Role of Enterococcus faecium as a Key Producer and Fermentation Condition as an Influencing Factor in Tyramine Accumulation in Cheonggukjang

    No full text
    The study evaluated the role of Enterococcus faecium in tyramine production and its response to fermentation temperature in a traditional Korean fermented soybean paste, Cheonggukjang. Tyramine content was detected in retail Cheonggukjang products at high concentrations exceeding the recommended limit up to a factor of 14. All retail Cheonggukjang products contained Enterococcus spp. at concentrations of at least 6 Log CFU/g. Upon isolation of Enterococcus strains, approximately 93% (157 strains) produced tyramine at over 100 µg/mL. The strains that produced the highest concentrations of tyramine (301.14–315.29 μg/mL) were identified as E. faecium through 16S rRNA sequencing. The results indicate that E. faecium is one of the major contributing factors to high tyramine content in Cheonggukjang. During fermentation, tyramine content in Cheonggukjang groups co-inoculated with E. faecium strains was highest at 45 °C, followed by 37 °C and 25 °C. The tyramine content of most Cheonggukjang groups continually increased as fermentation progressed, except groups fermented at 25 °C. At 45 °C, the tyramine content occasionally exceeded the recommended limit within 3 days of fermentation. The results suggest that lowering fermentation temperature and shortening duration may reduce the tyramine content of Cheonggukjang, thereby reducing the safety risks that may arise when consuming food with high tyramine concentrations
    corecore