5 research outputs found

    Responses of nitrogen oxide to high‐speed solar wind stream in the polar middle atmosphere

    No full text
    Abstract During high‐speed solar wind stream (HSS) events, energetic electrons from the Earth’s inner magnetosphere transfer solar wind energy to the high‐latitude upper atmosphere, which may affect chemical compositions in the region. We conduct a study on the production of nitrogen oxides (NOₓ) in the polar middle atmosphere by energetic electron precipitation (EEP) during HSS events in the period of international polar year 2007–2008 northern winter. During this period, the geomagnetic activity was generally quiet and there were no major solar events, which indicates that the EEPs were mostly associated with HSS events. The electron flux immediately increases with the onset of HSS events and remains elevated during the passage of the events. The estimation of the directly produced NOx by EEPs was attempted by using the correlation between NOₓ and dynamic tracers such as CO and CH₄. It was found that the direct effect of EEPs on NOₓ reaches down to about 55‐km altitude and the amount is estimated to be about 2 ppbv. This result indicates that the variations of polar stratospheric NOₓ in winter are mostly associated with dynamical processes such as vertical transport and horizontal mixing. We also found that the middle atmospheric O₃ depletion during HSS events seems to be related to the EEP‐induced NOₓ at least in the uppermost stratosphere in the polar region

    Polar middle atmospheric responses to medium energy electron (MEE) precipitation using numerical model simulations

    No full text
    Abstract Energetic particle precipitation (EPP) is known to be an important source of chemical changes in the polar middle atmosphere in winter. Recent modeling studies further suggest that chemical changes induced by EPP can also cause dynamic changes in the middle atmosphere. In this study, we investigated the atmospheric responses to the precipitation of medium-to-high energy electrons (MEEs) over the period 2005–2013 using the Specific Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). Our results show that the MEE precipitation significantly increases the amounts of NOₓ and HOₓ, resulting in mesospheric and stratospheric ozone losses by up to 60% and 25% respectively during polar winter. The MEE-induced ozone loss generally increases the temperature in the lower mesosphere but decreases the temperature in the upper mesosphere with large year-to-year variability, not only by radiative effects but also by adiabatic effects. The adiabatic effects by meridional circulation changes may be dominant for the mesospheric temperature changes. In particular, the meridional circulation changes occasionally act in opposite ways to vary the temperature in terms of height variations, especially at around the solar minimum period with low geomagnetic activity, which cancels out the temperature changes to make the average small in the polar mesosphere for the 9-year period

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore