2 research outputs found

    Three-dimensional visualization of mission planning and control for the NPS autonomous underwater vehicle

    Get PDF
    The article of record may be found at http://dx.doi.org/10.1109/48.107150Oceanic Engineering, IEEE Journal ofThe Naval Postgraduate School (NPS) is constructing a small autonomous underwater vehicle (AUV) with an onboard mission control computer. The mission controller software for this vehicle is a knowledge-based artificial intelligence (AI) system requiring thorough analysis and testing before the AUV is operational. The manner in which rapid prototyping of this software has been demonstrated by developing a controller code on a LISP machine and using an Ethernet link with a graphics workstation to simulate the controller's environment is discussed. The development of a testing simulator using a knowledge engineering environment (KEE) expert system shell that examines AUV controller subsystems and vehicle models before integrating them with the full AUV for its test environment missions is discussed. This AUV simulator utilizes an interactive mission planning control console and is fully autonomous once initial parameters are selecte

    Rule-based motion coordination for the adaptive suspension vehicle

    Get PDF
    This study investigates the utility of rule-based coordination of motion for rough-terrain locomotion by a hexapod walking machine. The logic for generating leg commands is written in Prolog while the simulation of the terrain and of the vehicle kinematics, as well as low lev3el on-board computer functions, are written in extended Common Lisp. It is found that this approach results in code that is much easier to understand and modify than previous motion coordination programs written in Pascal. The authors believe that both the methodology and the stepping logic presented in this report possess sufficient merit to justify full-scale physical testing in the Adaptive Suspension Vehicle operated under DARPA contract by Ohio State Universityresearch sponsored in part by contract from the Ohio State University Research Foundation under RF Project No. 716520.http://archive.org/details/rulebasedmotionc00kwakApproved for public release; distribution is unlimited
    corecore