
I , b^/ S73
NPSCS-9 1-006

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Rule-Based Motion Coordination

For The Adaptive Suspension Vehicle

On Ternary-Type Terrain

S. H. Kwak
and

R. B. McGhee *

December 1990

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Department of Computer Science, Code CS

Monterey, California 93943-5100

FedDocs
D 208.14/2
NPS-CS-9 1-006

FccLCoca. _ qh0a,b3L0S.|a\a-OPS-CS Si

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull

Superintendent Provost

This report was prepared in conjunction with research funded by the Ohio State University

Research Foundation.

Reproduction of all or part of this report is authorized.

UIN^LA;>MriL.lJ

ECURITY CLASSIFICATION OF THIS PAGE ^^Mffiwr
REPORT DOCUMENTATION PAGE MONTEREY &A9^^SHOOL

txt^t AccTocn 1 i b. RESTRICT IVE MARKINGS
^*"rmn

ia. REP6RT SECURITY CLASSIfICA!I6N UNCLASSIFIED

2a SECURI TY CLAS5I FICATI6N AU T HOR ITY 3! DISTRIBUTI6N/AVAILABIUTY 6F REP6RT

Approved for public release;

distribution is unlimited
2b. D EcLASs i ricATION/DaWNGRADlNG SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NPSCS-91-006
5. MONITORING ORGANIZATION REPORT NUMBER(S)

5a, NAME OF PERFORMING ORGANIZATION
Computer Science Dept.

Naval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

cs

7a. NAME OF MONITORING ORGANIZATION
Prof. Kenneth Waldron, D. of Mech. Eng.

Ohio State University

Sc. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100

7b. ADDRESS (City, State, and ZIP Code)

2075 Robinson Laboratory, 206 W 18th Ave.

Columbus, Ohio 43210
8a NAME 6E FUNDING/SPONSORING

ORGANIZATION

Ohio State Univ. Research Found.

8b OFFICE SYMB6L
(if applicable)

5! PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

RF Project #716520 & RF Purchase Order #496549

io source of funding num?~is
Project

—6c. ADDRESS (City, State, and ZIP Code)
PROGRAM
ELEMENT NO NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Rule-Based Motion Coordination For the Adaptive Suspension Vehicle on Ternary-Type Terrain

TTP
j^

S
Kwaic

U
an
h
c?R

(S

B. McGhee
13&.TYPE OF REPORT
Final

16. SUPPLEMENTARY N6TATI6N

lib. time covered
from 10/88 jo

is page count
17712/89 14. DATE OF REPORT (Year, Month, Day)

December 1990

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Robotics, Walking Machines, Adaptive Suspension Vehicle, Robot Motion

Planning, Rule-based systems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This study investigates the utility of rule-based coordination of motion for ternary-type terrain locomotion by a hexa-

pod walking machine. The ternary-type terrain considered is composed of permitted areas, forbidden areas, and ditch

areas. The logic for generating motion coordination is written in Prolog while the simulation of the terrain and of the

vehicle kinematics, as well as low-level on-board computer functions, are written in extended Common Lisp and Fla-

vors. It is found that this approach, which utilizes multiple programming paradigms for programming motion coor-

dination logic and simulation objects, results in code that is much easier to understand and modify than previous mo-
tion coordination programs written in Pascal. Thus, the code development effort and time are greatly reduced. The
authors believe that both the me'Jiodology and the motion coordination logic presented in this report possess sufficient

merit to justify full-scale physical testing in the Adaptive Suspension Vehicle at the Ohio State University.

io. CJIS f RIBUTI6N/AVAILABIUTY 6F ABSTRAC1
Q UNCLASSIFIED/UNLIMITED fj SAME AS RPT. fj DTIC USERS

i2a NAME OF^RESfONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

Kaf 22b. TE LEPHON E (Include Area Code)

(408) 646-2168
22c

Kw
Symb6l

)D FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Rule-Based Motion Coordination
For The Adaptive Suspension Vehicle

On Ternary-Type Terrain

S.H. Kwak and R.B. McGhee

Naval Postgraduate School

Department of Computer Science (Code CS)
Monterey, CA 93943, U.S.A.

ABSTRACT

This study investigates the utility of rule-based coordination of motion for ternary-type terrain locomotion

by a hexapod walking machine. The ternary-type terrain considered is composed of permitted areas,

forbidden areas, and ditch areas. The logic for generating motion coordination is written in Prolog while the

simulation of the terrain and of the vehicle kinematics, as well as low-level on-board computer functions,

are written in extended Common Lisp and Flavors. It is found that this approach, which utilizes multiple

programming paradigms for programming motion coordination logic and simulation objects, results in code

that is much easier to understand and modify than previous motion coordination programs written in Pascal.

Thus, the code development effort and time are greatly reduced. The authors believe that both the

methodology and the motion coordination logic presented in this report possess sufficient merit to justify

full-scale physical testing in the Adaptive Suspension Vehicle at the Ohio State University.

1. Introduction

The Adaptive Suspension Vehicle (ASV) is a large six-legged vehicle designed for outdoor

operation in rough terrain. Limb motion coordination for the ASV is accomplished by an on-board

computer network consisting of one PC-AT, eight Intel single-board computers, and two special purpose

computers [1,2]. The software system is hierarchically organized with a clear distinction being made among

an individual leg control level, a leg motion coordination level, and a body motion planning level [2,3].

Except for the two special purpose computers, the application software for the ASV is currendy written

almost entirely in Pascal. A custom designed real-time operating system, written mainly in PL/M,

coordinates the functioning of all processes running on the various processors of the vehicle computer. The

total ASV software system involves somewhat more than 150,000 lines of code [2,4].

An important feature of the ASV is its omni-directional motion capability [1,2] which gives it the

general maneuverability characteristics of a helicopter. This behavior is achieved by providing the operator

with a joystick with three major motion axes for control of vehicle forward velocity, lateral velocity, and

turning velocity respectively [2]. The vehicle control computer accepts these commands and synthesizes a

sequence of leg movements to produce the desired body behavior. It is assisted in this task by information

from an optical terrain scanner which provides a map of terrain elevation in the immediate vicinity of the

vehicle [5], and by force and position feedback from each leg.

Until now, nearly all outdoor experiments with the ASV have made use of a tripod gait in which

legs are used in two sets of overlapping tripods [6,7]. This gait was chosen both for its relative simplicity

and for its known optimality under high speed straight-line locomotion conditions [7,8,9]. However, the

tripod gait is not well suited to extreme terrain situations in which a significant fraction of the area under a

given leg may be unsatisfactory for load bearing due to the presence of rocks, holes, obstacles, soft soils,

etc. In the latter case, simulation experiments [10 ,11], and initial indoor testing [12], indicate that on-line

optimization of leg sequencing should give better results.

Gaits involving real-time optimization of stability or maneuverability in the presence of terrain

constraints are often calledfree gaits to distinguish them from the periodic gaits used by walking machines

and animals in less difficult circumstances [13,14]. Until now, all free gait studies have been performed

based on a binary terrain model which includes two types of terrain objects; i.e., obstacle and non-obstacle

[10,1 1 ,15,16] . The size of the individual obstacles is restricted to be comparable to that of the feet of the

ASV with the further assumption that the obstacles are randomly distributed on the terrain. In this study,

in addition to the above small obstacles, a ditch obstacle, which is a large and structured obstacle whose size

is comparable to that of the vehicle, is introduced as a third type. Therefore, the terrain model is ternary

rather than binary, and contains both randomly distributed small obstacles and large ditch obstacles.

Though the free gait motion coordinator developed in [16] performs well for binary terrain, in this report, a

new motion coordinator, called the "Ditch Crossing Motion Coordinator" is additionally introduced to

enhance ditch crossing capability. Thus, two motion coordinators coexist in the program, while, at one

instance, only one of them is allowed to control the vehicle depending on terrain conditions. If the

existence of a ditch is detected, the newly introduced motion coordinator takes over control of the vehicle

until the ASV has crossed the ditch. After crossing the ditch, vehicle control is automatically transferred

back to the Free Gait Motion Coordinator developed in [16] to handle small obstacles effectively.

Differing from all ASV experiments using an imperative language (Pascal) to encode stepping

algorithms, this study uses Prolog, Flavors [18], and Lisp as in [16,17] because of the authors' belief that

such a multiple programming paradigm is very well suited to the complex nature of the motion

coordination problem for the ASV, involving a constant interaction among the on-line optimization logic,

the vehicle and its internal objects, and the numerical routines. In what follows, Prolog is used to program

the first part, and Flavors and Lisp are introduced to program the second and the third parts. This division

of the motion coordination problem is suggested by the physiology of animals which utilize a brain, a

physical body, and muscles to move themselves. Moreover, like the hierarchical organization existing

among the these functional parts of animals, the program described in this report is also organized according

to same type of hierarchy. Specifically, the top level of the program is the motion coordinator written in

Prolog, while the second level is the Flavor objects which simulate a body, legs, and sensory organs. The

numerical function routines written in Lisp perform all necessary calculations to move the legs and the

body analogous to the action of muscles. The resulting code is remarkably easy to understand and modify

because each programming language naturally provides the right programming paradigm for each division of

the program. Moreover, the resulting code is at least an order of magnitude shorter than the corresponding

Pascal code for same reason. Consequently, this approach significanUy reduces development time.

The remainder of this report first presents definitions used in this report, and a discussion of the

mathematical-model used to simulate terrain and the ASV vehicle. This is followed by a description of the

ditch crossing motion coordination rule-set, and the use of Prolog to realize both ditch crossing motion

coordination and normal motion coordination. The report concludes with a discussion of the results of the

investigation and suggestions for future research.

2. Definitions

In this report, a number of definitions are used as follows:

Definition 1 : Afoothold is a point on a segment of terrain, and can be assigned to a leg while the

leg is in the air. When the foot of a leg is placed on the terrain, its assigned foothold becomes the support

point of the leg. A foothold associated with a leg can be changed to a new one before the foothold becomes

a support point [10].

Definition 2: The support pattern associated with a given set of leg support points is the convex

hull of the vertical projections of all support points into a horizontal plane [13].

Definition 3: The magnitude of the stability margin at time t for an arbitrary support pattern is

equal to the shortest distance from the vertical projection of the vehicle center of gravity to any point on the

boundary of the support pattern. If the pattern is statically stable, the stability margin is positive.

Otherwise, it is not defined [15].

Definition 4: A working volume is associated with each leg. This volume is a subset of three-

dimensional space defined relative to the body and consists of the collection of points which can be reached

by the foot of the given leg [11,19].

Definition 5: A temporal kinematic margin is associated with each foothold. At any instant, this

margin is the time remaining until the associated leg would reach the boundary of its working volume if the

foothold were used as a support point [15,19].

3. Vehicle and Terrain Model

While the vehicle model used in this study is based on the ASV, it represents only the major

vehicle dimensions and components. Specifically, the cabin and the terrain scanner are omitted from the

simulation model, while the geometries of the body and the legs are identical to those of the ASV.

Therefore, the simulation model is represented by a simple six-faced box with each leg drawn as two line

segments as shown in Figure 1. The exact vehicle dimensional data can be found in other literature [2,7].

Differing from the most previous simulation studies related to gaits and control of stepping

[10,1 1,15,16,19], which simply ignore the overlapped portions of adjacent working volumes, in this study,

the overlapped portions are taken into account during the foothold selection process in order to utilize the

full kinematic capability of the vehicle.

The terrain adopted for this study is made up of terrain cells, and these individual cells are classified

into two types of cells. One type, called a permitted cell, is able to support the body load when a leg steps

on it. The other type, named aforbidden cell, is not usable because of unfavorable terrain conditions.

Though this classification is complete with respect to individual terrain cells, there is a chance that a group

of the forbidden cells can constitute a large structured obstacle instead of being randomly distributed. In this

study, one type of structured large obstacle, a ditch, is considered because of its special shape, a long length

and a relatively narrow width. Due to its shape, the most effective way to overcome a ditch is, if possible,

crossing it instead of avoiding it by going around it. However, avoidance may be a better choice for other

types of large obstacles. This possibility is not studied in this report Rather, the simulation terrain is

ternary terrain which is composed of permitted cells,forbidden cells, and a ditch. A typical terrain example

utilized in this study is shown in Figure 1. A cell with an "X" mark is a forbidden cell or a part of a ditch

area while unmarked cells are permitted. A ditch is shown in the middle of the simulation terrain.

Forbidden cells on this terrain can be designated either manually by an operator or automatically by using a

random number generator with a threshold chosen to produce a specified ratio between permitted cells and

forbidden cells [11].

The dimensions of each cell are one foot by one foot. This size is comparable to that of the feet of

the ASV, and is larger than the resolution of the terrain scanner [5,12].

An overall block diagram of the program developed in this study is shown in Figure 2. This entire

program is written for a Symbolics 3650 Lisp machine [1 1,20,21]. Each box shown is an object that is an

instance of a Flavor [18] with the exception of the Free Gait Coordinator which is written in Symbolics

Prolog [22]. Like the physical ASV which has nine major parts, namely, a body, a vision sensor, a cab,

and six legs, the simulation object, "ASV" has correspondingly nine component objects, "Body", "Vision

Sensor", "Joystick", and "Legl" through "Leg6". These nine objects are linked to "ASV" through a part

relation [16,23]. Each part has its sub-parts, and again is linked to them with a part relation. Differing

from the nine major parts which have visible corresponding parts in the real ASV, the subparts of the

simulation are not physically tangible, but are introduced because of their functionalities for program

development. For example, the "Legl" object, which is a part of the "ASV" object, has six subparts:

"Legl Plan Machine", "Legl Control Machine", "Legl Executor", "Legl Contact Sensor", "Legl Foothold

Finder", and "Legl TKM Calculator". Through the use of a make-instance function in an appropriate

Flavor slot, the "Legl" object binds all of these subparts into one group with the part relation [18]. In

order to show the above relations among the objects in Figure 2, the six subpart objects are drawn under the

"Legl" object.

Besides the part relation, Figure 2 also shows the hierarchical control structure linking the

simulation objects. Specifically, communication is restricted between objects in two adjacent levels by an

assumption that upper levels have the right to access status information at lower levels, but the latter must

receive explicit commands from upper levels to update their internal states. For example, when "ASV", the

vehicle object, needs "Legl" to support its body, it sends a "Place" decision to "Legl" and continuously

monitors "Legl" as to whether "Legl" has begun to support the body or is in motion to try to reach a

foothold. On receiving a "Place" decision from "ASV", "Legl" sends the "Place" decisions to "Legl Plan

Machine" while making observations of this machine. This type of message passing to and status

observation from subordinates continues until the "Place" decision is accomplished. That is, when the foot

of "Legl" actually hits the ground, the contact sensor of "Legl" detects the event and changes its internal

state. The state change of "Legl Contact Sensor" is observed by "Legl Executor" and by "Legl Control

Machine". In this way, the state change in the lowest level is propagated to higher levels until the touch

down event arrives at "ASV". The detailed description of this control scheme can be found in other

literature [16].

The joystick object simulates the physical three-axis joystick of the ASV through the use of six

keys on the simulation computer keyboard to increment or decrement each of the three rates controlled by

the joystick. These rates artforward velocity, lateral velocity, and turn rate, all in body coordinates. The

altitude of the vehicle above the terrain and its orientation in roll and pitch relative to the terrain are

automatically regulated using the algorithms described in [24].

While an elementary representation of the vision sensor is included in the program, as described in

the above discussion of terrain, it is assumed that all forbidden cells and ditches have already been identified

by prior terrain analysis. Of course this assumption does not represent a physical limitation of the ASV,

but as made merely to allow this simulation to be focused on vehicle control, rather than on vision.

In addition to simplification of vision, this simulation also ignores leg mass in order to avoid the

complexity of computing a center of gravity which moves with respect to the body. Moreover, all inertial

forces are omitted from the simulation. That is, as in most previous simulation studies relating to gaits

and control of stepping [8,9,10,11,16,19,25,26], only static stability is considered in this study. While

this simplification would be serious in high speed locomotion, free gaits are most appropriate to low speed

traversal of extremely difficult terrain, so the authors do not feel that this is a serious limitation on the

applicability of the results of this investigation.

4. Ditch Crossing Motion Coordination

When the vision system detects the existence of a ditch, the vehicle operation mode is switched

from the normal free gait mode [1 1,16] to the ditch crossing mode. In contrast to the normal free gait mode

which performs on-line optimization of leg stepping under an environment with randomly distributed small

obstacles [11,16], the coordinator in the ditch crossing mode controls the vehicle with a predetermined

motion sequence in order to effectively overcome a ditch; i.e., a structured large obstacle. The ditch

crossing mode is composed of two phases, the preparation phase and the main phase, and these two phases

are sequentially executed. The preparation phase provides a transition period from the normal free gait mode

to the ditch crossing mode, and the main phase performs the actual ditch crossing action.

4.1 Preparation Phase

The preparation phase is composed of a sequence of nine states, and these nine states are grouped

into two cycles which are named Cycle 1 and Cycle 2. The first cycle, Cycle 1, consists of six states and

takes care of a transition from the normal mode to the ditch crossing mode. During the execution of the

first cycle, the body attitude is modified to be suitable to cross a ditch. The second cycle, Cycle 2, consists

of three states and causes the vehicle to have the correct leg configuration for the ditch crossing operation in

the main phase. Thus, during the execution of Cycle 2, the body is not moved at all. The graphical

representation of the preparation phase is shown in Figure 3.

The six states in Cycle 1 are Place Legs in the Air, Back Middle Legs, Forward Rear Legs,

Forward Middle Legs, Forward Front Legs, and Lift Middle Legs and Move. Body movement is involved

only in the last state. The first state, Place Legs in the Air, represents a simple action; i.e., leg placing,

but the rest of the states represent at least two sequential actions. For example, during the Forward Middle

Legs state, the middle legs are lifted from the ground and placed on the ground using one of the closest

footholds to the front end of the working volumes of the middle legs. Similarly, in the Back Middle Legs

state, the middle legs are lifted and placed at one of the closest footholds to the back end of the working

volumes of the middle legs.

8

The first cycle of the preparation phase begins with the Place Legs in the Air state. During this

state, all the legs in the air are placed on the ground without any body movement. At most three legs will

be placed in this state because at least three legs must support the body at all times to maintain the stability

of the vehicle. When a leg is placed in this state, one of the closest footholds to the front end of the

working volume of each leg is selected as a stepping position on the ground. Thus, the newly placed legs

have larger temporal kinematic margins (TKMs) than the legs already on the ground.

At the end of the first state, all six legs are on the ground. Thus, the middle legs can be used for

any purpose because the front and the rear four legs are sufficient to make the vehicle stable as long as these

four legs are within their kinematic limits. Therefore, the middle legs are used to provide maximum TKMs

for the front and the rear legs in the following four states.

The Back Middle Legs state is the first state of the sequence to maximize TKMs of the front and

the rear legs. The middle legs are lifted and placed at the back ends of their working volumes. At the

completion of this state, the middle legs are placed behind the center of the gravity of the vehicle. Thus,

the vehicle can maintain its stability with the front and the middle legs alone, and the rear legs can be lifted.

In the Forward Rear Legs state, the rear legs are lifted and placed at the front end of the working

volume of the rear legs. Thus, both rear legs will have maximum TKMs at the end of this state. Though

the rear leg lifting actions are inherently safe, before lifting one of the rear legs the vehicle stability is

checked to ensure that the vehicle is stable without the rear leg. If the vehicle is not stable, the leg is not

lifted from the ground, and the ditch crossing operation will be halted. If it is stable without the leg, the

leg is lifted. After the first rear leg is lifted safely, the same test is performed on the other rear leg before it

is lifted. This type of test is always performed before lifting any leg from the ground during the ditch

crossing operation in order to ensure safe operation. At the end of the Forward Rear Legs state, both of the

rear legs are placed. Again, the middle legs become redundant for the vehicle stability.

In the Forward Middle Legs state, the middle legs are lifted and placed at the front end of the

working volumes of the middle legs. Because the new support points of the middle legs are ahead of the

center of the gravity of the vehicle, the vehicle now can be safely supported by the middle and the rear legs.

Thus, the front legs can be lifted from the ground without harming the stability of the vehicle.

In the Forward Front Legs state, the front legs are lifted and placed at the edge of the vehicle side of

the ditch. This has to be done because the new support points of the front legs will be the last ones on the

vehicle side of the ditch. This requirement is not hard to meet since, as long as the edge of the ditch is

included in the working volume of the front legs, the front legs can always be put in the right position.

However, the opposite side of the edge of the ditch should not be included in the working volume in order

to prevent its being used as possible footholds for the front legs. Therefore, there is a range of the vehicle

locations with respect to the near edge of the ditch so that the vehicle can select the right stepping positions

for the front legs. This range is shown in the following equation:

1 1
P + yL-DW< DCIR <P+yL (1)

where DCIR : Ditch Crossing Initiation Range
with respect to gravity center of the vehicle

P : Pitch between adjacent legs

L : Longitudinal length of

working volume for each legs

DW : Ditch Width.

To understand this relationship, it should be recognized that the distance from the vehicle's center to the

front ends of the working volumes of the front legs is the sum of the pitch between the middle and the front

legs and half of the longitudinal length of the working volume of the front legs. Thus, the meaning of

Eq. (1) is that when the ditch crossing operation is initiated, the front ends of the working volumes of the

front legs should be positioned between the near edge and the far edge of the ditch. Evidently, if ditch

crossing is initiated anywhere in the above range, the ditch crossing operation will not be hampered since

the body attitude and the leg stepping positions are corrected during the preparation phase. It should be also

noted, however, that if DW is less than 3 ft, the vision system does not have to detect the existence of the

ditch at all. The normal plan developed in [16] is capable of handling such ditch width without any

problem.

At the completion of the Forward Front Legs state, the front legs will be placed on the vehicle

side edge of the ditch. Again, the middle legs become redundant.

10

In the Lift Middle Legs and Move state, the middle legs are lifted and the body is moved into the

ditch area until at least one of the supporting legs (the front and the rear legs) reaches its kinematic limit. If

too many obstacles have not interfered with the operations of the previous four states, there will be a high

probability for the front legs to reach their kinematic limits first because footholds in the front most

portion of the working volumes of the front legs may be excluded by the location of the ditch. Thus, at the

end of this state, the vehicle body is fully pushed into the ditch area under the constraints of the current leg

configuration, and its movement is stopped. At this point, although the body position and the front leg

positions are right for the ditch crossing, the rear leg positions are not appropriate because they are already

near their kinematic limits. Thus, further body movement is very limited or impossib» depending on the

kinematic margins of the rear legs. Even though the opposite side of the edge may not be reachable by the

front legs at the end of the Lift Middle Legs and Move state, the vehicle can cross the ditch if it moves

further into the ditch area by eliminating the kinematic problem of the rear legs and if the ditch width is

narrower than the vehicle ditch crossing capability. In the second cycle of the preparation phase, the

kinematic limits of the rear legs are eliminated.

The second cycle of the preparation phase has three states and starts with the Back Middle Legs

state. No body movement is involved in the second cycle, but the stepping positions of the rear and the

middle legs are rearranged.

In the first state, the middle legs, which are redundant to make the vehicle stable, are lifted and

placed near the back end of their working volumes. Because the new support points of the middle legs are

behind the center of the gravity of the vehicle, the rear legs can be lifted without harming the vehicle

stability.

In the Forward Rear Legs state, the rear legs are lifted and placed near the front end of their working

volumes. Thus, the rear legs obtain maximum kinematic margins. At this point, though the rear legs

provide maximum body movement potential, the middle legs prohibit further body movement.

In the Forward Middle Legs state, the middle leg kinematic problem is eliminated. The middle

legs are lifted and placed at the front end of the working volume of the middle legs. Therefore, both the

middle and the rear legs have their maximum kinematic margins, while the body is completely pushed into

11

the ditch area. In contrast to the middle and the rear legs, the front legs should be at their kinematic limits

because the front legs stepping positions have not changed since they were at their kinematic limits at the

end of Cycle 1. If the front legs are now lifted, vehicle body movement can be resumed. This will be the

first action of the following phase, the Main Phase.

In summary, at the end of the preparation phase, the body is fully moved into the ditch area within

the limits of the stability of the vehicle and the kinematics of the legs. The middle legs and the rear legs

are fully forward to enhance the ditch crossing capability, and the front legs are ready to be lifted from the

ground. This preparation allows the vehicle to cross a wider ditch than the longitudinal length of the

vehicle legs' working volumes. Though the other side of the ditch is not included in the front legs' working

volumes at the end of the preparation phase, the body can move forward as long as the vehicle's stability is

maintained and the leg kinematic limits are not reached. That is, if the other side of the ditch is included in

the front leg's working volume before the vehicle becomes unstable and before the other legs reach their

kinematic limits, the other side is reachable by the front legs. If the front legs can be placed on the other

side within the vehicle's kinematic and stability limitations, then the vehicle can cross the ditch because the

ASV legs' working volumes are identical and because the pitches between the front legs and the middle legs

and between the middle legs and the rear legs are the same.

As a result of the above arguments, the maximum ditch width can be crossed by the ASV, which

has identical working volumes for all legs and the equal pitches between the front and the middle legs and

between the middle and the rear legs, is determined by both the pitch length and the length of the

longitudinal working volumes of the legs. Specifically, the maximum ditch width can be crossed by the

ASV is given by:

MDW = P+ yL-SM-SDE (2)

where MDW : Maximum Ditch Width

P : Pitch between adjacent legs

L : Longitudinal length of

working volume

SM : Safety Margin

SDE : Search Digitization Effect.

12

As can be seen, the maximum ditch width (MDW) is calculated by adding the pitch between adjacent legs

and the half of the longitudinal length of the working volumes of the legs, and then by subtracting the

safety margin (SM) and the search digitization effect (SDE). The safety margin is a prescribed margin

ensuring safe operation of the vehicle. The search digitization effect is an artifact of the foothold search

process resulting from a one foot by one foot grid search. With the dimensions of the simulation model

discussed in [2,7], the MDW becomes 8.5 ft when the SM and the SDE are 0.5 ft, respectively.

4.2 Main Phase

The Main Phase is composed of three cycles The first and the third cycles are composed of three

states each, while the second cycle contains only one state. The first cycle in the main phase in the

program is named Cycle 3 to show continuation from the preparation cycles. Consequently, Cycle 1 and

Cycle 2 belong to the Preparation Phase, and Cycle 3 through Cycle 5 belong to the Main Phase. A

graphical representation of the Main Phase is shown in Figure 4.

The first cycle, Cycle 3 is composed of three states, Move Forward Front Legs, Move Back Middle

Legs, and Move Forward Rear Legs. During this cycle, the front legs cross the ditch, and the rear legs are

prepared to replace the middle legs which will cross the ditch in the following cycle. In this cycle, the

vehicle body is allowed to move forward whenever possible. Therefore, all the state names are pre-fixed

with "Move", and each state is composed of three actions, leg lifting, body movement, and leg placement.

In the Move Forward Front Legs state, first, the front legs are lifted while the body is not moved.

As soon as both front legs are lifted from the ground, the second action is performed, which is a forward

body movement. This body movement is sustained until the middle legs limit this movement because the

middle leg positions with respect to the center of the vehicle gravity determine the stability margin when

only the middle and the rear legs support the body. Though the middle legs can kinematically move behind

the center of gravity, they should be stopped in front of the center of gravity to maintain the safety stability

margin.

When the body movement is stopped with the completion of the second action of the current state,

the opposite side of the ditch will be included in the working volumes of the front legs if the width of the

13

ditch is narrower than MDW. Thus, the third action of the Move Forward Front Legs state follows, in

which the front legs are placed on the opposite side of the ditch. Thus, the middle legs become redundant

for the vehicle stability.

In the second state of Cycle 3, the Move Back Middle Legs state, the middle legs are lifted from

the ground. The vehicle body movement is resumed because the movement is restricted by the middle legs

to maintain the vehicle stability margin. The body movement is continued until any one of the supporting

legs meets its kinematic limit. Specifically, the body will be moved until one or both rear legs reach its or

their kinematic limits because the kinematic margins of the rear legs have been used to move the body in

the previous state, but those of the front legs have been just maximized in the previous state, the Move

Forward Front Legs state of Cycle 3. This effect can be easily seen in the second drawing of Cycle 3 .State

2 in Figure 4, and "Rear Legs" written on the top of the second drawing shows the termination condition of

the current body movement. When the kinematic limits of the rear legs stop the body movement, the third

action of the current state is performed, which is to place the middle legs at the back end of their working

volumes. Because the middle legs are placed behind the center of gravity, the rear legs can be lifted from the

ground while the front and the middle legs stably support the body.

In the Move Forward Rear Legs state, which is the third state of Cycle3, first, the rear legs are

lifted from the ground. As soon as the rear legs are lifted, the body movement is resumed. However, the

body movement is immediately blocked by the middle legs which have placed back in the previous state.

Thus, the third action of the current state, which places the rear legs at the front end of their working

volumes, is immediately started. Consequently, very little body movement is involved in this state, but

the rear legs gain large TKMs so that the body can be moved further in the next cycle. Therefore, though

the other side of the ditch may not reachable by the middle legs under the current body position, the new

body movement, which will be performed in the next cycle, will make this possible.

The second cycle of the main phase, Cycle 4, is composed of one state, the Move Forward Middle

Legs state. In this cycle, the middle legs will be moved to the other side of the ditch. The first action is

lifting the middle legs so that the body movement can be resumed. This movement will last as long as the

14

front legs have positive TKMs because the TKMs of the front legs have already been partially consumed in

the previous cycle. This is shown in the second drawing of Cycle 4:State 1 in Figure 4.

When the body movement is stopped, the other side of the ditch is reachable by the middle legs

because the geometries of the front and the middle legs are identical and because the working volumes of the

front and the middle legs overlap slightly at the rear end of the former volume and the front end of the latter

volume. As soon as the middle legs are positioned on the other side of the ditch, this cycle is terminated.

The last cycle, Cycle 5, which is the third cycle of the main phase, takes care of the ditch crossing

action of the rear legs. This cycle is composed of the three states, the Move Forward Front Legs state, the

Move Back Middle Legs state, and the Move Forward Rear Legs state. These three states are the same that

of Cycle 3. This is not a coincidence, but an expected consequence of the geometrical symmetry of the

front and the rear legs.

In the Move Forward Front Legs states, the kinematic problems of the front legs which block

further body movement are relieved because the first action of this state is to lift the front legs from the

ground. Thus, the body movement, which is the second action of this state, is resumed, and is terminated

by the positions of the middle legs with respect to the body because the positions of the middle legs

determine the stability of the vehicle. When this state is terminated, the front legs are placed on the ground.

In the Move Back Middle Legs state, the body movement is resumed as soon as the middle legs are

lifted from the ground. This movement will last until the kinematic limits of the rear legs are reached.

When this condition is met, the body movement is stopped and the middle legs are placed as far backward as

possible so that the middle legs can support the body together with the front legs. Consequently, the

middle legs will be placed at the edge of the ditch because this edge is in the working volumes of the middle

legs.

The Move Forward Rear Legs state, which is the last state in the last cycle, causes the rear legs to

cross the ditch. The first action is to lift the rear legs from the ground. Body movement is then resumed

and continued until the other side of the ditch is reachable by the rear legs. Again, this will be

accomplished because the working volumes of the middle and the rear legs slightly overlap. Finally, all the

legs are across the ditch. Thus, the ditch crossing operation has accomplished and the operational mode is

15

switched back to the normal mode, and the Free Gait Motion Coordinator [16] regains control of the

vehicle.

5. Program Implementation

The top level Ternary Terrain Motion Coordinator is written in Symbolics Prolog because of its

easy translation characteristics from natural language to a computer program, and because of its

straightforward interface to Symbolics Lisp language in which the rest of the program is written. The

Prolog program is listed in Figure 5. It is composed of three functional groups of predicates. The first

group controls the flow of the whole program, while the second does logic processing which generates

commands for the vehicle body and legs. The last group is responsible for bridging between the program

written in Prolog and the robot program in Flavor objects. This is accomplished through the Lisp function

call facility provided by Symbolics Prolog. Specifically, anything following the "is" predicate in a Prolog

clause may be either a Prolog arithmetic function or the name of a Lisp function [22]. If a Lisp function

name follows the "is" predicate, it is evaluated according to its definition inside the Lisp environment. In

the program of Figure 5, arguments following "is" predicates are names of Lisp functions, and make

connections to the Lisp environment. A returned value resulting from a Lisp function call may be used to

instantiate a variable preceding the "is" Prolog predicate or test whether the returned value matches a value

preceding the "is" predicate. In the former case, the subgoal "is" always succeeds, but the latter case, only

when two values agree does the "is" subgoal succeed. In the program, only the former case is used. The

Lisp portion of the program is listed in the appendix attached at the back of this report.

The Prolog program is started by typing "robot" on the computer console. The robot clause is the

first line of the program. After the initialization process is done, it makes the loop clause repeat Thus, it

determines the flow of the whole program.

The loop clause is composed of three subgoals, get_command, plan, and execute. This shows the

flow of the program execution for each loop. Based on the input command from the joystick, motion is

16

planned, and the planned motion is executed. Then, the executed motion is drawn on the screen by the

draw_robot clause which actually calls a corresponding Lisp function, graphical display.

The plan subgoal of the loop clause has two alternatives,free_gaits_motion_coordination_plan and

ditch_crossing_motion_coordination_plan. In the Prolog program, the ditch mode subgoal is tested first

because ditch_crossing_motioncoordination_plan deals with a more specific case than the other. If the

ditchjnode subgoal succeeds, then ditch_crossing_motion_coordination_plan is executed. If not, then

freejgaitsjnotion coordination_plan is executed. Thefree_gaits_motion_coordination_plan clause is

composed of updatejobot_state, checkjkmjimit, leg_plan, body_plan, and generate decision subgoals.

The first and the second subgoals update the state and the body position of the vehicle *» i check kinematic

problems of the legs. The third subgoal, leg_plan, performs on-line optimization for leg coordination

using the free gait strategy [11,16]. Based on the leg plan, the fourth subgoal, body_plan, plans the body

movement to enhance the vehicle stability. Finally, the generate_decision, subgoal sends decisions to the

"ASV" robot flavor object. A detailed description of \hzfree_gaits_motion_coordination_plan can be found

in other literature [11,16].

The ditch_crossing_motioncoordination_plan and the related clauses implement the ditch crossing

coordination discussed in the previous section. There are two ditch_crossing_motion_coordination_plan

clauses in the program, and the first clause checks the termination condition while the second clause

performs the ditch crossing planning. If the ditch crossing activity is not completed, then the first clause

fails, and the second ditch_crossing_motion_coordination_plan clause is executed. Thus, the cyclejplanner

clause is called into an action.

The cycle_planner clause and related clauses follow the above two ditch_plan clauses. This group

of clauses is named "Cycle Planner". The first clause of the "Cycle Planner" group, ditch_plan_done,

checks the completion of the ditch crossing plan. The two cyclejplanner clauses take care of ditch plan

cycle changes from cycle 1 to cycle 5 by increasing the cycle number whenever one cycle is completed.

Therefore, the ditch_plan_done clause succeeds as soon as cycle 5 is finished because the cycle number

becomes 6 immediately after the completion of Cycle 5. The last subgoal of ditch_plan done, is

17

idlecycle, which is a dummy plan without any leg planning. It is introduced to fill the gap for the

transition between cycles.

The subgoals used in the cycle_planner clauses, one_cycle_done and plan_cycle, are grouped in the

following part of the program, which is called the "Plan Cycle Dispatcher" group. The one_cycle_done

clause checks the termination condition of one plan cycle, and the five plan_cycle clauses execute the

appropriate ditch plan cycles based on the plan cycle number which is given through the plan_cycle fact in

the Prolog data base.

The ditch_plan_cycle clauses, ditch_plan_cydel through ditch_plan_cycle5 , form another group

called "Cycles" in the program following the "Plan Cycle Dispatcher" group. The first subgroup,

ditch_plan_cydel , has seven clauses. The first clause of this subgroup takes care of the initial state

transition, and the rest of them represent the six states in cycle 1 discussed in the previous section.

Specifically, the first clause retracts plan_state(start), which is a cycle starting fact, from the Prolog data base

and asserts a new fact, planstatefplaceJegsjnjhe_air), which is the name of the first state. After changing

the Prolog data base, the first clause executes the placeJegsjnjhe_air subgoal, which performs the place

legs in the air state in Cycle J. When the place legs in the air subgoal is executed, the first clause

provides the next state information for the subgoal so that when the current subgoal is completed the correct

information about the succeeding state is asserted in the data base. The second clause through the seventh

clause sequentially represent six states in cycle 1. Thus, these ordered clauses represent the sequence of state

transitions among the six states. When the last clause calls the lift middle legs and move subgoal,

one_plan cycle_done is given instead of the name of the next state to assert the cycle termination fact in the

data base. This structure is repeated for the rest subgroups of the "Cycles" group, ditch_plan_cycle2 through

ditch_plan_cycle5.

The following group called "States" is composed of 10 different subgroups, and each subgroup is

composed of two clauses. These clauses accept information about the next state so that the next state

information is asserted when the current state is completed. However, only the first clause, which takes

care of its state transition, utilizes the next state information. The second clause ignores the next state

information and executes a subgoal whose name is its clause head name pre-fixed with "do_". Additionally,

18

both clauses of each subgroup determine the body movement by executing either the stop or the move

subgoal depending on the needs of each state described in the previous section.

The "State Executors" clause group follows the "States" clause group. This clause group is

composed of 1 1 subgroups of clauses. Among them, 10 subgroups are responsible for execution of 10

states in the "States" group, while the eleventh subgroup takes care of the body movement, such as move,

stop, clearjnove memory , and move done. Therefore, except for the last subgroup, each subgroup shows a

sequence of actions within a state, which are described in the previous section. For example, the

dojbackjniddleJegs clause subgroup, which is the first subgroup of the "State Executors" group, is started

with three major clauses. The first clause, backjniddlejegsjione, tests the state termination condition, and

the second and the third clauses perform a sequence of actions, which are lifting the middle legs and then

placing them at the back side of their reachable areas. The second clause tests whether both middle legs are

lifted by executing the subgoal, all middle legs lifted. Initially, this test should fail. Thus, the third clause

is executed. After the third clause is executed twice, the both middle legs will have been lifted from the

ground because the liftjniddle_legs subgoal causes one middle leg to be lifted from the ground at a time. In

the dojback middle legs subgroup, there are two lift middle_legs clauses. The first clause performs the leg

lifting action by selecting one middle leg and then causing it to be lifted from the ground, while the second

clause performs a default action by always succeeding. Only when the both middle legs are lifted from the

ground, is the middle leg placement executed. Specifically, when the alljniddleJegsjifted subgoal in the

second clause of this subgroup is satisfied, the place middleJegsjback subgoal is executed. If the middle

legs are placed on the ground again, men the backjniddlejegsjione clause, which is the first clause of the

current subgroup, succeeds because the alljniddleJegsjifted subgoal has been satisfied by the

middleJegs(lifted) fact which was asserted when middle legs were lifted from the ground, and because the

all middle legsjplaced subgoal is now satisfied. Before completing the backjniddlejegsjione clause, the

first clause of the current subgroup, the clear middleJiftedjnemory and the clearjnovejnemory subgoals

clear residual facts generated during execution of the dojbackjniddleJegs clauses in order not to interfere

with the execution of the following "State Executions" subgroup clauses.

19

Rest of the subgroups in the "State Executors" group have the exactly same structure that of the

do backjniddle legs clause subgroup. Specifically, one state termination clause is followed by two state

execution clauses which are pre-fixed with "do_" and related clauses which support these leading three

clauses. If the related clauses are already available, they are not duplicated by adding them in the subgroup.

The only exception to the above structure is the fifth subgroup, the do_liftjniddle_legs clause

subgroup. This subgroup is composed of one clause, and there is no clause to test the state termination

condition. The time required to complete the middle leg lifting action in the liftjniddle_legs_andjnove

state, which is the only state that utilizes the do_liftjniddle_legs clause, is considerably shorter than that

needed to complete the body movement in the state. Thus, the leg lifting action is always guaranteed before

the current state is terminated.

The last group of clauses is named "Plan Libraries". These clauses are used by both

ditch_crossingjnotion_coordinationj)lan andfreejgaitsjnotionjoordinationjplan. This group is

composed of two subgroups, bodyjplan and generate decision. The latter subgroup sends planned leg

motions through decisions to the robot, "ASV", which is a flavor object. It sends them one by one unul

all the decisions in the Prolog data base are exhausted. The former subgroup takes care of body movement

by executing speedjplan and trajectoryjplan. The speedjjlan clauses control the speed of body movement

and the trajectoryjplan clauses modify body movement trajectory in order to increase the stability margin of

the vehicle using a "push" operation which causes the gravity center of the vehicle to move away from the

boundary of the current supporting pattern [16].

6. Discussion

Performance tests were carried out for various terrain conditions by making the ASV follow a

prescribed standard trajectory. The standard trajectory is a straight line across the model terrain from one

side to the other side while crossing a ditch oriented perpendicular to the direction of vehicle motion. No

failures to complete the standard trajectory were observed for any terrain containing up to a 8 ft width ditch

if no randomly distributed forbidden cells were included in the terrain. However, when forbidden cells were

20

added to the terrain with a 8 ft width ditch, the performance was severely degraded. If the randomly

distributed forbidden cells occupied 30 percent or more of the area of the non-ditch portion of the whole

simulation terrain, the ASV always failed to complete the standard trajectory. Specifically, the ditch

crossing operation was halted because the random obstacles on the ground prevented the ASV from using

the most favorable stepping positions near the ditch. However, when the width of a ditch was reduced to

7 ft, no failures in ditch crossing operations were observed. Rather, the capability to overcome randomly

distributed forbidden cells became the bottle neck which determined whether the ASV could complete the

standard trajectory or not. Overall, when less than 70 percent of the total terrain cells were the forbidden

cells, the program made the ASV follow the standard trajectory without great difficulties.

One of the advantages of using object-oriented programming for the ASV object and its subobjects

was the easy extension to a new ASV with additional functionality required for the ditch crossing

maneuvers. Specifically, this was accomplished by using the inheritance mechanism provided by Flavors.

The original ASV was an instance of "robot" class, and the new extended ASV is an instance of "ditch-

robot" class. The latter class is defined as a subclass of the former class. Thus, the entire functionality of

the "robot" class became available to the "ditch-robot" class through the inheritance mechanism. The newly

required capabilities were added to the "ditch-robot" class using "defmethod" which defines the functionality

of a class in Flavors. The result was remarkable. The additional code written for the new "ditch-robot"

class was less than 10% of the size of the original "robot" class, and roughly more than 95% of the original

code was reused.

One of advantages of rule-based control of motion coordination is the ease of extension of

coordination logic resulting from the fact that individual rules or a group of rules define an independent

piece of behavior. Instead of rewriting all the code related to motion coordination, the new ditch crossing

coordinator was simply added to the original Prolog code. In order to accept the new coordinator, the

original plan Prolog goal in [16] was subdivided into two plan subgoals,free_gaits motion_coordi-

nation_plan and ditch crossingjnotion coordination_plan. The old plan code in [16] was merely renamed

asfree_gaits motioncoordination_plan without any further modification, and the new ditch crossingjno-

tioncoordination_plan code was simply added. If the original motion coordinator logic had been imbedded

21

in the "ASV" robot code because only one programming paradigm, such as an imperative paradigm, had

been utilized to program the work in [15], the extension to a ditch crossing capability in the "ASV" robot

code would have been a very difficult and very time consuming task.

Overall, the development and coding of the new extended "ASV" and motion coordinator clearly

manifested the advantages of the use of multiple programming paradigms to program a complex robot

motion coordination function which constandy performs on-line optimization like a human or an animal

coordinating his or its motion based on sensory information and learned experiences. Rule-based

programming to express logic, object-oriented programming to simulate physical and functional objects,

and a numerical processing library written in a functional or imperative language to implement mathematics

and physics needed for simulation are very naturally divided components to simulate a complex system,

such as that treated in this report.

One of major complains about programs using Artificial Intelligence techniques and languages is

slow execution speed in on-line computing applications. In this study reported here, the most prominently

visible candidate to be blamed for slow execution speed is Prolog code. However, the execution speed of

Symbolics Prolog on a Symbolics Lisp machine is not so slow as might be expected. It is only slightly

slower than that of Symbolics Lisp or Flavors. However, the execution speed of Prolog implementations

on other machines are usually considerably slower than those of non-Prolog implementations. One

solution for slow Prolog execution speed may be to use a special Prolog processor, such a Xenologic X-l

[27], to execute Prolog code. The other solution is to convert the Prolog code to an other language, such as

Lisp. The latter approach was actually adopted to test the correctness of the program developed herein,

using a TI Explorer machine because this solution is readily applicable without great modification to the

interface between Prolog and Lisp codes, and because a TI Explorer machine was conveniently available to

the authors in an office environment. Though the speed gain in program execution is little over that

expected with Symbolics Prolog, this approach potentially makes a much wider variety of computing

hardware suitable to execute the motion coordination program developed here. Moreover, this approach may

provide another advantage in near future since advances in microprocessors based on RISC or CISC

architecture [28] will, with respect to Lisp execution speed, soon equal or outperform Lisp machines [20].

22

Already, with respect to execution speed alone, SPARC-based Sun workstations narrow the large gap

previously existing between a Lisp machine and a conventional machine running the Lisp language.

Therefore, rather than running a slow Prolog program on a conventional machine, automatic conversion

from Prolog to Lisp after a development phase could become an effective way to achieve markedly better

performance if the program were to be tested on the physical ASV walking machine.

7. Summary and Recommendation

The main purpose of this study was to demonstrate the value of a multiple pr* • ramming paradigm

approach in the development of software for motion coordination for the ASV walking machine. An

important secondary goal was extending the work in [16] so that the ASV can cross a ditch without any

assistance from a human operator. Thus, the terrain handling capability of the ASV under program control

was extended from binary-type terrain to ternary-type terrain for the first time. The third goal was to take

into consideration the overlapping working volumes of the legs of the ASV in order to utilize the full

kinematic capability that the vehicle geometry can give. This later factor made a direct contribution in

widening the maximum ditch width (MDW) that the vehicle can cross.

The approach adopting multiple programming paradigms for motion coordination, which was

proposed in [11] and implemented in [16], again exhibited its power. First of all, it forced a well-organized

and functionally clean abstraction hierarchy for a complex and ill-defined problem. Secondly, it

considerably reduced development time and effort The program development associated with this report

could have been a major undertaking if a single programming paradigm had been utilized. Instead, as

described in the preceding text, with the approach taken here most of the program in [16] is reused, while

only small amount of code is additionally written.

The code translation from Prolog to Lisp was possible because the Prolog code used herein was

utilized as a simple rule-based system. This success of this translation further justifies the usage of Prolog

as one of the languages in the multiple paradigm environment because it could allow much wider varieties

23

of computing hardware to execute the motion coordination program developed. Moreover, this actually

made the program execution somewhat faster than that of the program with the untranslated Prolog code.

Among studies remaining to be conducted are inclusion of vehicle inertia in the simulation, effects

of leg motion on the location of the vehicle center of gravity, and a better simulation of the vision system.

Such a study would be appropriate to a later phase of this research along with an investigation of further

changes to the Prolog rule set to enable the ASV to climb over large obstacles or to go around them if this

is not possible.

24

References

[I] McGhee, R. B., "Computer Coordination of Motion for Omni-Directional Hexapod Walking
Machines," Advanced Robotics, Vol. 1, No. 2, pp. 91-99, June 1986.

[2] Bihari, T. E., Walliser, T. M., and Patterson, M. R., "Controlling the Adaptive Suspension

Vehicle," IEEE Computer Magazine, Vol. 22, No. 6, pp. 59-65, June 1989.

[3] McGhee R. B., Orin, D. E., Pugh, D. R., and Patterson, M. R., "A Hierarchically-Structured

System for Computer Control of a Hexapod Walking Machine," Theory and Practice ofRobots

and Manipulators, pp. 375-381, ed. by A. Morecki et al, Hermes Publishing, 1985.

[4] Schwan, K., Bihari, T., Weide, B. W., and Taulbee, G., "High-Performance Operating System

Primitives for Robots and Real-Time Control Systems," ACM Transactions on Computer
Systems. Vol. 5, No. 3, pp. 189-231, August 1987.

[5] Kau, C. C, Olson, K. W., Ribble, E. A., and Klein, C. A., "Design and Implementation of a

Vision Processing System for a Walking Machine," IEEE Trans, on Industrial Electronics, Vol.

36, No. 1, pp. 25-33, February 1989.

[6] Klein, C. A., Olson, K. W., and Pugh, D. R., "Use of Force and Attitude Sensors for Locomotion

of Legged Vehicle over Irregular Terrain," International Journal ofRobotics Research, Vol. 2, No.

2, pp. 3-17, Summer 1983.

[7] Song, S. M., and Waldron, K. J., Machines that Walk: The Adaptive Suspension Vehicle, MIT
Press, Cambridge, Massachusetts, 1989.

[8] Bessonov, A. P. and Umnov, N. V., "The Analysis of Gaits in Six-Legged Vehicles According to

Their Static Stability," Proceedings of CISM-IFTOMM Symposium on Theory and Practice of
Robots and Manipulators, Udine, Italy, September 1973.

[9] McGhee, R. B., "Robot Locomotion," in Neural Control of Locomotion, pp. 237-264, ed. by

R.R. Herman, et al., Plenum Press, New York, 1976.

[10] McGhee, R. B. and Iswandhi, G. I., "Adaptive Locomotion of a Multilegged Robot over Rough
Terrain," IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No. 4, pp. 176-

182, April 1979.

[II] Kwak, S. H., A Computer Simulation Study of a Free Gait Motion Coordination Algorithm for

Rough-Terrain Locomotion by a Hexapod Walking Machine, Ph. D. dissertation, The Ohio State

University, Columbus, Ohio, 1986.

[12] Pugh, D. R., et al., "Technical Description of the Adaptive Suspension Vehicle", International

Journal of Robotics Research, Vol. 9, No. 2, April 1990.

[13] McGhee, R. B., "Walking Machines," Advances in Automation and Robotics, pp. 259-284, ed. by

G. N. Saridis, Jai Press, Inc., 1985.

[14] P ;arson, K. G. and Franklin, R., "Characteristics of Leg Movements and Patterns of Coordination

in Locusts Walking on Rough Terrain," International Journal ofRobotics Research, Vol. 3., No.

2, Summer 1984.

[15] Kwak, S. H., A Simulation Study of Free-Gait Algorithm for Omni-Directional Control of
Hexapod Walking Machines, M. S. thesis, The Ohio State University, Columbus, Ohio, 1984.

[16] Kwak, S. H. and McGhee, R. B., "Rule-Based Motion Coordination For a Hexapod Walking

Machine," Advanced Robotics, Vol. 4, No. 3, pp. 263-282, Robotics Society of Japan, December
1990.

25

[17] Kwak, S. H. and McGhee, R. B., Rule-Based Motion Coordination for the Adaptive Suspension

Vehicle, Technical Report, No. NPS52-88-011, Naval Postgraduate School, Monterey, CA, May
1988.

[18] Bromley, H. and Lamson, R. Lisp Lore, 2nd edition, Kluwer Academic Publishers, New York,

1987.

[19] Lee, W. J., and Orin, D. E., "Omnidirectional Supervisory Control of a Multilegged Vehicle

Using Periodic Gaits," IEEE Transactions on Robotics and Automation, Vol. RA-4, No. 2, pp.

635-642, December 1988.

[20] Bawden, A., Greenblatt, J., Holloway, T., Knight, D., Moon, D, and Weinreb, D., "The Lisp

Machine," An MIT Perspective, pp. 343-373, ed. by P.H. Winston and R.H. Brown, 1979.

[21] Anon., User's Guide to Symbolics Computers, Symbolics, Inc., Concord, Massachusetts, July,

1986.

[22] Anon., User's Guide to Symbolics Prolog, Symbolics, Inc., Concord, Massachusetts, September,

1986.

[23] Winston, P. H., Artificial Intelligence, 2nd edition, Addison-Wesley, Reading, Massachusetts,

1984.

[24] Lee, W. J., and Orin, D. E., "The Kinematics of Motion Planning for Multilegged Vehicles over

Uneven Terrain," IEEE Transactions on Robotics and Automation, Vol. RA-4, No.2 3, pp. 204-

212, April, 1988.

[25] Hirose, S., Fukuda, Y., and Kikuchi, H., "The Gait Control System of a Quadruped Walking

Machine," Advanced Robotics, Vol. 1, No. 4, December 1986, pp. 289-323.

[26] Klein, C. A. and Messuri, D. A., "Automatic Body Regulation for Maintaining Stability of a

Legged Vehicle During Rough-Terrain Locomotion," IEEE Journal ofRobotics and Automation,

Vol. RA-1, No. 3, pp. 132-141, September 1985.

[27] Dobry, T., The X-l : A High Performance Prolog Machine, Technical Report, Xenologic Inc.,

Newark, California, 1989.

[28] Gelsinger, P. P., Gargini, P. A., Parker, G. H., and Yu, A. Y., "Microprocessors Circa 2000,"

IEEE Spectrum, Vol. 26, No. 10, pp. 43^7, October 1989.

26

o
o
IE
o
>

c
CO

c
'co
1—
1—

a>

C
o

E

CO

o
a
i-

0)

27

Free Gait Motion

Coordinator

Vision

Sensor
Leg1 Body Joystick

Leg1 Plan

Machine

T

Leg1 Foothold

Finder

^t

Leg1 Control

Machine

^

Leg1 TKM
Calculator

^T

Leg1 Executor

1

Leg1 Contact

Sensor

-

i

Support Plan

Estimator

Joystick

Command
Regulator

Body

Controller

Terrain

Regulator

Stabilty

Calculator

H Calculator

Figure 2: Hierarchy of simulation objects

28

Cvclel :State1 : Place Legs in the Air

il*^+JL+JL+^^^+i

Cvclel :State2: Back Middle Leas

M 't j T
.
f'TT

,

Cvclel :State3: Forward Rear Leas

i- •
i i

Cvclel :State4: Forward Middle Leas

I*

,
*

,
*

,
<

,
*

,
<

, I

Cvclel :State5: Forward Front Leas

Cvclel :State6: Lift Middle Leas and Move

Figure 3: Ditch Crossing Preparation Phase

29

Cvcle2:State1 : Back Middle Leas

Cvcle2:State2: Forward Rear Leas

Cvcle2:State3: Forward Middle Leas

Figure 3: Continued ..

30

Move
Stabilit y

Cycle3:State1 : Move Forward Front Legs

Move
Rear Le9 s

Cycle3:State2: Move Back Middle Leas

Move
Middle Le9 s

Cvcle3:State3: Move Forward Rear Legs

Move
Front Le9 s

t:!:!:!:! : !:i

Cvcle4:State1 : Move Forward Front Leas

Figure 4: Ditch Crossing Main Phase

31

Move
Stability

Cycle5:State1 : Move Forward Front Legs

Move
Rear Legs

Cycle5:State2: Move Back Middle Leas

Move
Middle Legs

Cycle5:State3: Move Forward Rear Leas

Figure 4: Continued

32

;;-*- Mode:PROLOGPackage: robot-rulesBase:10 -*-

robot :- initialize, repeat, my_loop, fail.

initialize :- inits, init_ditch_plan.

init_dicth_plan :- retract(plan_cycle(_)). retract(plan_state(_)X fail.

init_ditch_plan :- asserta(plan_cycle(l)),

asserta(plan_state(place_legs_in_the_air))

.

myjoop :- get_command, plan, execute, !.

get_command :- X is readjoystick.

plan :- ditch_mode, ditch_crossing_motion_coordination_plan.

plan :- free_gaits_motion_coordination_plan.

ditch_mode :- ditch_mode(in). ;cleared by ditch_plan.

ditch_mode :- X is at_ditch_area, X= t, asserta(ditch_mode(in)).

execute :- execute_motion, draw_robot, !.

execute_motion :- X is execute_planned_motion.

draw_robot :- X is graphical_display.

Figure 5: Prolog Program

33

;; Free Gaits Motion Coordination Plan

free_gaits_motion_coordination_plan :- update_robot_state, check_tkm_limit,

leg_plan, body_plan, generate_decision, !.

update_robot_state :- X is update_robot_status.

check_tkm_limit :- A_leg is at_tkm_limit, A_leg \= nil,

asserta(limit_leg(A_leg,lift)).

check_tkm_limit.

leg_plan :- lift_a_leg.

leg_plan :- exchange_legs.

leg_plan :- stable.

leg_plan :- place_a_leg.

leg_plan :- wait_for_legs.

stable :- Condition is stable_p, Condition = L

lift_a_leg :- stable, A_leg is smallest_tkm_leg, A_leg \== nil,

Condition is stable_without(A_leg), Condition == t,

asserta(decision(A_leg,_,l ift))

.

exchange_legs :- stable, LegA is smallest_tkm_leg, LegA\= nil,

LegB is max_sm_leg(LegA), LegB \= nil,

Condition is has_more_tkm(LegB ,LegA),
Condition == t,

asserta(decision(LegA,LegB .exchange)).

place_a_leg :- A_leg is max_sm_leg(_)» A_leg\= nil,

asserta(decision(A_leg,_,place)).

wait_for_legs :- try_new_foothold.

wait_for_legs :- recovery, asserta(reduce_speed).

wait_for_legs :- asserta(reduce_speed), restore_limit_leg.

try_new_foothold :- A_leg is leg_with_new_foothold, A_leg V== nil,

asserta(decision(A_leg,_,place)).

recovery :- A_leg is do_recovery, A_legV= nil,

asserta(decision(A_leg,_,place)), restore_limit_leg.

restore_limit_leg :- retract(limit_leg(A_leg,lift)).

restore_limit_leg.

Figure 5: Continued ...

34

V

; Ditch Crossing Motion Coordination Plan

.*******************************+**************************

ditch_crossing_motion_coordination_plan :- ditch_plan_done, retract(ditch_mode(in)), idle_cycle.

ditch_crossing_motion_coordination_plan :- cycle_planner.

********** Cycle Planner ************

ditch_plan_done :- plan_cycle(6), retract(plan_cycle(6)),

asserta(plan_cycle(1)),

prepare_next_ditch_plan.

prepare_next_ditch_plan :- move.

cycle_planner :- one_cycle_done, plan_cycle(N), Nl is N+l,

retract(plan_cycle(N)), asserta(plan_cycle(Nl)),

idle_cycle.

cycle_planner :- plan_cycle.

;;********** Plan Cycle Dispatcher ************

one_cycle_done :- plan_state(one_plan_cycle_done),

retract(plan_state(one_plan_cycle_done)),

initialize_plan_state.

initialize_plan_state :- asserta(plan_state(start)).

plan_cycle :- plan_cycle(l), update_robot_state, ditch_plan_cycle_l,

body_plan, generate_decision,!.

plan_cycle :- plan_cycle(2), update_robot_state, ditch_plan_cycle_2,

body_plan, generate_decision,!.

plan_cycle :- plan_cycle(J), update_robot_state, ditch_plan_cycle_3,

body_plan, generate_decision,!.

plan_cycle :- plan_cycle(4), update_robot_state, ditch_plan_cycle_4,

body_plan, generate_decision,!.

plan_cycle :- plan_cycle(5), update_robot_state, ditch_plan_cycle_5,

body_plan, generate_decision,!.

idle_cycle :- update_robot_state, body_plan, generate_decision, !.

Figure 5: Continued ...

35

********** Cvr\pc *********Cycles

ditch_plan_cycle_l :- plan_state(start), retract(plan_state(start)),

asserta(plan_state(place_legs_in_the_air))

,

place_legs_in_the_air(back_middle_legs).

place_legs_in_the_air(back_middle_legs).

back_middleJegs(forward_rear_legs).

fOTward_rear_legs(forward_middle_legs).

forward_middle_legs(fOTward_fipont_legs).

:- forward_frontJegs(lift_middleJegs_and_move).

: - lift_middle_legs_and_move(one_plan_cycle_done).

ditch_plan_cycle_l

ditch_plan_cycle_ 1

ditch_plan_cycle_ 1

ditch_plan_cycle_l

ditch_plan_cycle_l

ditch_plan_cycle_ 1

ditch_plan_cycle_2 :- plan_state(start), retract(plan_state(start)),

asserta(plan_state(back_middlejegs))

,

back_middle_legs(forward_rear_legs).

ditch_plan_cycle_2 :- back_middle_legs(forward_rear_legs).

ditch_plan_cycle_2 :- forward_rear_legs(forward_middle_legs).

ditch_plan_cycle_2 :- forward_middle_legs(one_plan_cycle_done).

ditch_plan_cycle_3 :- plan_state(start), retract(plan_state(start)),

asserta(plan_state(move_forward_front_legs)),

move_forward_front_legs(move_forward_tniddle_legs).

ditch_plan_cycle_3 :- move_forward_front_legs(move_back_middle_legs).

ditch_plan_cycle_3 :- move_back_middle_legs(move_forward_rear_legs).

ditch_plan_cycle_3 :- move_forward_rear_legs(one_plan_cycle_done).

ditch_plan_cycle_4 :- plan_state(start), retract(plan_state(start)),

asserta(plan_state(move_forward_middle_legs)),

move_forward_middle_legs(one_plan_cycle_done).

ditch_plan_cycle_4 :- move_forward_middle_legs(onej)lan_cycle_done).

ditch_plan_cycle_5 :- plan_state(start), retract(plan_state(start)),

asserta(plan_state(move_forward_front_legs)),

move_forward_frontJegs(move_forward_middle_legs).

ditch_plan_cycle_5 :- move_forward_front_legs(move_back_middle_legs).

ditch_plan_cycle_5 :- move_back_middle_legs(move_forward_rear_legs).

ditch_plan_cycle_5 :- move_forward_rear_legs(one_plan_cycle_done).

Figure 5: Continued

36

.************** states ***************

;;;;; back_middle_legs subgroup

back_middle_legs(Next_State) :- plan_state(back_middle_legs),

back_middle_legs_done,

retract(plan_state(back_middle_legs))

,

asserta(plan_state(Next_State)),

stop.

back_middle_legs(Next_State) :- plan_state(back_middle_legs),

do_back_middle_legs,

stop.

;;;;; forward_front_legs subgroup

forward_front_legs(Next_State) :- plan_state(forward_front_legs)),

forward_front_legs_done,

retract(plan_state(forward_&ont_legs)

,

asserta(plan_state(Next_State)),

stop.

forward_front_legs(Next_State) :- plan_state(forward_front_legs)),

do_forward_front_legs,

stop.

;;;;; forward_middle_legs subgroup

forward_middle_legs(Next_State) :- plan_state(forward_middle_legs),

forward_middle_legs_done,

retract(plan_state(forward_middle_legs),

asserta(plan_state(Next_S tate))

,

stop.

forward_middle_legs(Next_State) :- plan_state(forward_middle_legs))

do_forward_middle_legs,

stop.

;;;;; forward_rear_legs subgroup

forward_rear_legs(Next_State) :- plan_state(forward_rear_legs),

forward_rear_legs_done,

retract(plan_state(forward_rear_legs),

asserta(plan_state(Next_State))

,

stop.

forward_rear_legs(Next_State) :- plan_stite(forward_rear_legs),

do_forward_rear_legs,

stop.

;;;;; lift_middle_legs_and_move subgroup

lift_rniddle_legs_and_rnove(Next_State):-plan_state(lift_middle_legs_and_move),

move_done, stop,

Figure 5: Continued ...

37

retract(plan_state(lift_middle_legs_and_move)),

asserta(plan_state(Next_State)).

lift_middle_legs_and_move(Next_State) :-plan_state(lift_middle_legs_and_move),

do_lift_middle_legs, move.

;;;;; move_back_middle_legs subgroup

move_back_middle_legs(Next_State) :- plan_state(move_back_middle_legs),

move_back_middle_legs_done,

retract(plan_state(move_back_middle_legs)),

asserta(plan_state(Next_State)).

move_back_middle_legs(Next_State) :- plan_state(move_back_middle_legs),

do_move_back_middle_legs.

;;;;; move_forward_front_legs subgroup

move_forward_front_legs(Next_State) :- plan_state(move_forward_front_legs),

move_forward_firont_legs_done,

retract(plan_state(move_forward_front_legs)),

asserta(plan_state(Next_S tate))

.

move_forward_front_legs(NexuState) :- plan_state(move_forward_front_legs),

do_move_forward_firont_legs.

;;;;; move_forward_middle_legs subgroup

move_forward_middle_legs(Next_State) :-pIan_state(move_forward_middle_legs),

move_forward_middleJegs_done,

retract(plan_state(move_forward_front_legs)),

asserta(plan_state(Next_S tate))

.

move_forward_middle_legs(Next_State) :- plan_state(move_forward_middle_legs),

do_move_forward_middle_legs.

;;;;; move_forward_rear_legs subgroup

move_forward_rear_legs(Next_State) :- plan_state(move_forward_rear_legs),

move_forward_middle_legs_done,

retract(plan_state(move_forward_rearJegs)))

assena(plan_state(Next_S tate))

.

move_forward_rear_legs(Next_State) :- plan_state(move_forward_rear_legs),

do_move_forward_rear_legs

.

;;;;; place_legs_in_the_air subgroup

place_legs_in_the_air(Next_State) :- plan_state(place_legs_in_the_air),

place_legs_in_the_air_done,

retract(plan_state(place_legs_in_the_air)),

asserta(plan_state(Next_state)),

stop.

place_legs_in_the_air(Next_State) :- plan_state(place_legs_in_the_air),

do_place_legs_in_the_air, stop.

Figure 5: Continued

38

..**************** State Executors ********************

;;;;; do_back_middle_legs subgroup

back_middle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed,

clear_middle_lifted_memory,clear_move_memory.

do_back_middle_legs :- all_middle_legs_lifted, place_middle_legs_back.

do_back_middle_legs :- lift_middle_legs.

all_middle_legs_ufted :- middle_legs(lifted).

all_middle_legs_lified :- X is both_middle_legs_lifted, X= t,

asserta(middle_legs(lifted))

.

all_middle_legs_placed :- X is both_middleJegs_placed, X= t.

clear_middle_lifted_memory :- retract(middle_legsOifted)).

place_middle_legs_back :- A_leg is placable_middle_leg, A_legV= nil,

asserta(decision(A_leg,_,place_back)).

place_middle_legs_back.

lift_middle_legs :- A_leg is liftable_middle_leg, A_legV= nil,

asserta(decision(A_leg,_,lift)).

uft_middle_legs.

;;»; do_forward_front_legs subgroup

forward_front_legs_done :- all_front_legs_lifted, all_front_legs_placed,

clear_front_lifted_memory , clear_move_memory

.

do_forward_front_legs :- all_front_legs_lifted, place_front_legs.

do_forward_front_legs :- lift_front_legs.

all_front_legs_lifted :- front_legs(lifted).

all_front_legs_lifted :- X is both_front_legs_lifted, X= t,

asserta(front_legs(lifted)).

all_front_legs_placed :- X is both_front_legs_placed, X= L

clear_front_lifted_memory :- retract(front_legs(lifted)).

place_front_legs :- A_leg is placable_front_leg, A_leg \== nil,

asserta(decision(A_leg,_,place)).

place_front_legs.

lift_front_legs :- A_leg is liftable_front_leg, A_legW nil,

asserta(decision(A_leg,_,lirt)).

lift_front_legs.

Figure 5: Continued

39

;;;;; do_forward_middle_legs subgroup

forward_middle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed,

clear_middle_lifted_memory, clear_move_memory.

do_forward_middle_legs :- all_middle_legs_lifted, place_middle_legs.

do_forward_middle_legs :- lift_middle_legs.

place_middle_legs :- A_leg is placable_middle_leg, A_legW nil,

asserta(decision(A_leg,_,place)).

place_middle_legs.

;;;;*, do_forward_rear_legs subgroup

forward_rear_legs_done :- aU_rear_legs_lifted, all_rear_legs_placed,

clear_rear_lifted_memory, clear_move_memory.

do_forward_rear_legs :- all_front_legs_lifted, place_rear_legs.

do_forward_rear_legs :- liftjrearjegs.

all_rear_legs_lifted :- rearjegs(lifted).

all_rear_legs_lifted :- X is both_rear_legs_lifted, X= t,

asserta(rear_legs(lifted)).

all_rear_legs_placed :- X is both_rear_legs_placed, X= t.

clear_rear_lifted_memory :- retract(rear_legs(lifted)).

place_rear_legs :- A_leg is placable_rear_leg, AJegV= nil,

asserta(decision(A_leg ,_,place)).

place_rear_legs.

lift_rear_legs :- A_leg is uftable_rear_leg, A_leg\== nil,

asserta(decision(A_leg,_,lift)).

lift_rear_legs.

;;;;; do_lift_middle_legs subgroup

do_lift_middle_legs :- lift_middle_legs.

;;;;; do_move_back_middle_legs subgroup

move_back_middle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed,

clear_middle_lifted_memory, clear_move_memory,

stop.

do_move_back_middle_legs :- all_middle_legs_lifted, move_done, stop,

place_middle_legs_back.

do_move_back_middle_legs :- all_middle_legs_lifted, move.

do_move_back_middle_legs :- lift_middle_legs, stop.

Figure 5: Continued ...

40

;;;;; do_move_forward_front_legs subgroup

move_forward_front_legs_done :- all_front_legs_lifted, all_front_legs_placed,

clear_front_lifted_memory, clear_move_memory,

stop.

do_move_forward_front_legs :- all_front_legs_lifted, move_done, stop,

place_front_legs.

do_move_forward_front_legs :- all_front_legs_lifted, move.

do_move_forward_front_legs :- lift_front_legs, stop.

»;;; do_move_forward_middle_legs subgroup

move_forward_middle_legs_done :- all_middle_legs_lifted,

all_middle_legs_placed,

clear_middle_lifted_memory,

clear_move_memory, stop.

do_move_forward_middle_legs :- all_middle_legs_lifted, move_done, stop,

place_middle_legs.

do_move_forward_middle_legs :- all_middle_legs_lifted, move.

do_move_forward_middle_legs :- lift_middle_legs, stop.

;;;;; do_move_fonvard_rear_legs subgroup

move_forward_rear_legs_done :- all_rear_legs_lifted, all_rear_legs_placed,

clear_rear_lifted_memory, clear_move_memory,

stop.

do_move_forward_rear_legs :- all_rear_legs_lifted, move_done, stop,

place_rear_legs.

do_move_forward_rear_legs :- all_rearjegs_lifted, move.

do_move_forward_rear_legs :- lift_rear_legs, stop.

;;;;; place_legs_in_the_air subgroup

place_legs_in_the_air_done :- X is all_legs_placed, X= L

place_legs_in_the_air :- A_leg is placable_leg, A_leg \= nil,

asserta(decision(A_leg,_,place)).

place_legs_in_the_air.

;;;;; body_movement subgroup

move :- asserta(resume_movement).

stop :- asserta(stop_movement).

clear_move_memory :- retract(move(done)).

clear_move_memory.

move_done :- move(done).

move_done :- X is at_tkm_limit, X V= nil, asserta(move(done)).

move_done :- X is at_stability_limit, X \= nil, asserta(move(done)).

Figure 5: Continued ...

41

+***

Plan Libraries

;;;;; body_plan subgroup

body_plan :- speed_plan, trajectory_plan.

speed_plan :- retract(reduce_speed), slow_down.

speed_plan :- speed_up.

speed_up :- X is speed_up_robot.

slow_down :- X is slow_down_robot.

trajectory_plan :- stable_m, restore_trajectory.

trajectory_plan :- modify_trajectory.

stable_m :- Condition is stable_p_m, Condition == t.

restorejrajectory :- X is restore_command.

modify_trajectory :- X is modify_command.

;;;;; generate_decision subgroup

generate_decision :- retract(decision(A_leg,B_leg,A_decision)),

X is send_decision(A_leg,BJeg,A_decision), fail.

generate_decision :- retract(limit_leg(A_leg,A_decision)))

X is send_decision(A_leg,_vA_decision), fail.

generate_decision

.

Figure 5: Continued

42

Appendix

Lisp Code for ASV Simulation

body-controller-t .li3p Wed Nov 28 10:11:54 1990 1

;;; -*- Mode : Common-Lisp; Base: 10 -*-

.***

body-controller definition

(defflavor body-controller (joystick-command-regulator terrain-regulator
H-calculator
body-trans-ratel body-rotate-ratel
body-trans-rate6 body-rotate-rate

6

body-trans-rate 10 body-rotate-rate 10
HI inv-Hl H6 inv-H6 H10 inv-HIO
H inv-H body-t body-r)

: initable-instance-variables)

(defmethod (body-controller :initti)

(setf joystick-command-regulator (make-instance ' joystick-command-regulator)

)

(setf terrain-regulator (make-instance 'terrain-regulator))
(setf H-calculator (make-instance 'H-calculator))
(send joystick-command-regulator :initti)
(send terrain-regulator :initti)
(setf H (send H-calculator :initti))
(send self : init-body-rates)
(send self :init-H)
HI
)

(defmethod (body-controller : init-body-rates)

(setf body-trans-ratel ' (0 0)

)

(setf body-trans-rate6 '(0 0))
(setf body-trans-ratelO '(0 0))
(setf body-rotate-ratel ' (0 0)

)

(setf body-rotate-rate6 '(0 0))
(setf body-rotate-ratelO '(0 0))

)

(defmethod (body-controller :init-H)

; library fucntion : ident
(setf HI H)

(setf H6 H)

(setf H10 H)
,

(setf inv-H (matrixinv H)

)

(setf invHl inv-H)
(setf inv-H6 inv-H)
(setf inv-HIO inv-H)

)

body-controller-t .lisp Wed Nov 28 10:11:54 1990

(defmethod (body-controller :control)
(joystick-command deceleration-factor estimated-support-plane)

(setf H HI)

(send self :update joystick-command deceleration-factor estimated-support-plane)
(send self :save)
(dotimes (i 10)

(cond ((equal i 0)

(setf body-trans-ratel body-t)
(setf body-rotate-ratel body-r)
(setf HI H)

(setf inv-Hl inv-H)

)

((equal i 5)

(setf body-trans-rate6 body-t)
(setf body-rotate-rate6 body-r)
(setf H6 H)

(setf inv-H6 inv-H)

)

((equal i 9)

(setf body-trans-ratelO body-t)
(setf body-rotate-ratelO body-r)
(setf H10 H)

(setf inv-HIO inv-H)))
(send self : update joystick-command deceleration-factor estimated-support-plane)
)

(send self : restore))

(defmethod (body-controller : update)
(joystick-command deceleration-factor estimated-support-plane)

; internally used by control method
(let* ((t-command (send terrain-regulator : regulate

estimated-support-plane H)

)

(j-command (send joystick-command-regulator : regulate
joystick-command deceleration-factor)

)

)

(setf body-t (list (first j-command) (second j-command)
(third t-command))

)

(setf body-r (list (first t-command) (second t-command)
(third j-command)))

(setf H (send H-calculator :new-H body-t body-r)

)

(setf inv-H (matrixinv H)))

)

(defmethod (body-controller : restore)

; internally used by control method
(send joystick-command-regulator : restore)
(send terrain-regulator : restore)
(send H-calculator .-restore))

(defmethod (body-controller :save)
(-)

; internally used by control method
(send joystick-command-regulator :save)
(send terrain-regulator :save)
(send H-calculator :save))

body-controller-t .lisp Wed Nov 28 10:11:54 1990

(defmethod (body-controller :get-body-trans-ratel)

body-trans -rate 1)

(defmethod (body-controller :get-body-rotate-ratel)

body-rot ate-ratel)

(defmethod (body-controller :get-body-trans-ratelO)

body-trans-ratelO)

(defmethod (body-controller :get-body-rotate-ratelO)

body-rotate-ratelO)

(defmethod (body-controller :get-Hl)
()

HI)

(defmethod (body-controller :get-inv-Hl)

inv-Hl)

(defmethod (body-controller :get-H6)

H6)

(defmethod (body-controller :get-inv-H6)

inv-H6)

(defmethod (body-controller :get-H10)

H10)

(defmethod (body-controller :get-inv-H10)

inv-HIO)

body-t.lisp Wed Nov 28 10:11:59 1990

;;; -*- Mode : Common-Lisp ; Base: 10 -*-

body flavor definition

(defflavor body (stability-calculator support-plane-estimator
body-controller owner
e st imated-support -plane
deceleration-factor
support -plane-clock
modify-vector
modify-vector-p
st op-mot ion- flag
joy-command)

: initable-instance-variables)

(defmethod (body : slow-down)
()

(setf deceleration-factor (+ deceleration-factor 1))

(if (> deceleration-factor 20)
(setf deceleration-factor 20))

)

(defmethod (body : speed-up)

(setf deceleration-factor (- deceleration-factor 1))

(if (< deceleration-factor 0)

(setf deceleration-factor 0)))

(defmethod (body :stable-m)
(supporting- legs)

(send stability-calculator :stable-m
supporting-legs (send body-controller :get-H10)))

(defmethod (body :stable-p-m)
(supporting-p-legs a-leg)

(send stability-calculator :stable-p-m
supporting-p-legs
(send body-controller :get-Hl))

)

(defmethod (body :stop-p)

(let ((trans-rate (send self :get-body-trans-ratel))

)

(equal (list (first trans-rate)
(second trans-rate)

)

' (0.0 0.0))))

(defmethod (body : modify-command)

(setf modify-vector

body-t.lisp Wed Nov 28 10:11:59 1990 2

(send stability-calculator : get-recovery-vector))

)

(defmethod (body :modify-command-p)

(setf modify-vector-p
(send stability-calculator :get-recovery-vector-p))

)

(defmethod (body : restore-command)

(setf modify-vector '(0 0)))

(defmethod (body : restore-command-p)

(setf modify-vector-p '(0 0)))

(defmethod (body : stop-motion)
(a-leg)

(setf stop-motion-flag a-leg)

(defmethod (body : restore-motion)

(setf stop-motion-flag nil)

)

(defmethod (body :initti)

(setf deceleration-factor 0)

(setf modify-vector-p ' (0 0))
(setf modify-vector '(0 0))
(setf stop-motion-flag nil)
(setf support-plane-clock 10)

(setf stability-calculator
(make-instance 'stability-calculator)

)

(setf support-plane-estimator
(make-instance 'support-plane-estimator)

)

(setf body-controller
(make-instance 'body-controller)

)

(send stability-calculator :initti)
(send support-plane-estimator :initti)
(send body-controller :initti)
)

(defmethod (body : get-modify-vector)

(vectsub modify-vector
(dotprod modify-vector

(normalize-vector joy-command)))

)

(defmethod (body :get-modify-vector-p)

modify-vector-p)

body-t.lisp Wed Nov 28 10:11:59 1990 3

(defmethod (body : calculate-motion)
(joystick-command legs)

(setf joy-command joystick-command)
(cond ((equal support-plane-clock 10)

; ??? bug ???
(setf estimated-support-plane

(send support-plane-estimator :get-plane legs))
(setf support-plane-clock 0)))

(setf support-plane-clock (+ support-plane-clock 1)

)

(cond
((or stop-motion-flag (null modify-vector-p)

)

(send body-controller :control
'(0 0)

estimated-support-plane)

)

(modify-vector-p
(send body-controller : control

(vectadd joy-command (send self :get-modify-vector-p)

)

deceleration-factor estimated-support-plane))

(t

(control body-controller
(vectadd joy-command (3end self :get-modify-vector)

)

deceleration-factor estimated-support-plane))))

(defmethod (body :get-estimated-support-plane)

estimated-support-plane)

(defmethod (body :get-body-trans-ratel)

(send body-controller :get-body-trans-ratel)

)

(defmethod (body :get-body-rotate-ratel)

(send body-controller :get-body-rotate-ratel)

)

(defmethod (body :get-body-trans-ratelO)

(send body-controller :get-body-trans-ratelO)

)

(defmethod (body :get-body-rotate-ratelO)

(send body-controller :get-body-rotate-ratelO)

)

(defmethod (body :get-Hl)

(send body-controller :get-Hl)

)

(defmethod (body :get-inv-Hl)

body-t.lisp Wed Nov 28 10:11:59 1990

(send body-controller :get-inv-Hl)

)

(defmethod (body :get-H6)

(send body-controller :get-H6)

)

(defmethod (body :get-inv-H6)

(send body-controller :get-inv-H6)

)

(defmethod (body :get-H10)

(send body-controller :get-H10)

)

(defmethod (body :get-inv-H10)

(send body-controller :get-inv-H10)

(defmethod (body :more-stable)
(supporting-legs legl leg2)

(send stability-calculator :more-stable
supporting-legs (send body-controller :get-H10)
legl leg2)

)

(defmethod (body : stable)
(supporting-legs)

(send stability-calculator : stable
supporting-legs (send body-controller :get-H10)))

(defmethod (body :stable-p)
(support ing-p-legs)

(send stability-calculator :stable-p
supporting-p-legs (send body-controller :get-Hl))

)

command-regulator-t .lisp Wed Nov 28 10:11:34 1990

... _*_ Mode : Common-Lisp; Base: 10 -*-

**

regulator flavor definition

**

(def flavor regulator ((max-a 3.2174) (time-const 0.5) (sampling-time 0.1))

: initable-instance -variables)

(defmethod (regulator : filter)
(desired-x present-x)

; first order regulation
(let ((del-vel (/ (- desired-x present-x) time-const)))

(+ (* (send self :g-limitor del-vel) sampling-time)
present-x))

)

(defmethod (regulator :g-limitor)
(del-vel)

; limit acceleration to 3.2174 ft/ (sec*sec) or 0.1 G.

(cond ((> del-vel max-a) max-a)
((< del-vel (- max-a)) (- max-a)

)

(T del-vel))

)

**

joystick-command-regulator flavor definition

**

(def flavor joystick-command-regulator (body-trans-rate-x
body-trans -rate -y
body-rotate-rate-z
old-body-trans-rate-x
old-body-trans-rate-y
old-body-rotate-rate-z)

(regulator)
: initable-instance-variables)

(defmethod (joystick-command-regulator rinitti)

(setf body--trans-rate-x 0.0)
(setf body-trans-rate-y 0.0)
(setf body-rotate-rate-z 0.0)
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

command-regulator-t . lisp Wed Nov 28 10:11:34 1990 2

(defmethod (joystick-command-regulator : regulate)
(joystick-command decele rat ion- factor)

(if (<= deceleration-factor 0)

(setf deceleration-factor 0.5)) ; remove effect of deceleration-factor,
(let* ((d-const .5)

(x (* (first joystick-command) (/ d-const deceleration-factor)))
(y (* (second joystick-command) (/ d-const deceleration-factor))

)

(r (* (third joystick-command) (/ d-const deceleration-factor))))
(setf body-trans-rate-x (send self : filter x body-trans-rate-x)

)

(setf body-trans-rate-y (send self : filter y body-trans-rate-y)

)

(setf body-rotate-rate-z (send self :filter r body-rotate-rate-z))

)

(if (< (abs body-trans-rate-x) 0.02) (setf body-trans-rate-x 0.0))
(if (< (abs body-trans-rate-y) 0.02) (setf body-trans-rate-y 0.0))
(if (< (abs body-rotate-rate-z) 0.005) (setf body-rotate-rate-z 0.0))
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

(defmethod (joystick-command-regulator : restore)

(setf body-trans-rate-x old-body-trans-rate-x)
(setf body-trans-rate-y old-body-trans-rate-y)
(setf body-rotate-rate-z old-body-rotate-rate-z)
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

(defmethod (joystick-command-regulator :save)

(setf old-body-trans-rate-x body-trans-rate-x)
(setf old-body-trans-rate-y body-trans-rate-y)
(setf old-body-rotate-rate-z body-rotate-rate-z)
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

control-machine-t .lisp Wed Nov 28 10:11:00 1990 1

;;; -*- Mode : Common-Lisp; Base: 10 -*-

**

state flavor definition

**

(defflavor state (name next-state)

: initable-instance-variables)

(defmethod (state : state-name)

name)

(defmethod (state : set-next-state)
(a-state)

(setf next-state a-state))

**

sync-state flavor definition

**

(defflavor sync-state ((time 0) (del-t 0.1) time-out)
(state)

: initable-instance-variables)

(defmethod (sync-state :change)

(setf time (+ time del-t)

)

(cond ((>= time time-out)
(setf time 0)

next-state)
(t self))

)

(defmethod (sync-state :get-time)

time)

**

control-machine-t.lisp Wed Nov 28 10:11:00 1990

async-state flavor definition

**

(defflavor async-state ((command nil) (observation nil))
(state)

:init able-instance -variables)

(defmethod (async-state : change)
(given-command observed-event)

(cond ((and (not observation)
(equal given-command command)

)

next-state)
((and (not command)

(equal observed-event observation))

next-state)
(t self)))

**

state-machine flavor definition

**

(def flavor state-machine (state owner)

: initable-instance-variables)

(defmethod (state-machine : state-name)

(send state : state-name)

)

control-state-machine flavor definition

(defflavor control-state-ntachine ((command nil) (observation nil)
contact-sensor executor)

(state-machine)
: initable-instance-variables)

control-machine-t .lisp Wed Nov 28 10:11:00 1990

(defmethod (control-state-machine :initti)
(leg-name)

(if (member leg-name ' (legl leg4 leg5)

)

(send self : init-control-machine 'support)
(send self : init-control-machine 'ready))

(setf contact-sensor (send owner -.contact-sensor))
(setf executor (send owner :executor))

)

(defmethod (control-state-machine : init-control-machine)
(a-state-name)

; internally used by init method
(let (return lift support contact descent advance ready)

(setf return
(make-instance 'sync-state

:name 'return : time-out 0.6))
(setf lift

(make-instance ' sync-state
:name 'lift : time-out 0.4
:next-state return)

)

(setf support
(make-instance 'async-state

:name 'support :command ' recover-command
:next-state lift))

(setf contact
(make-instance 'sync-state

:name 'contact : time-out 1.0
:next-state support))

(setf descent
(make-instance 'async-state

:name 'descent :observation 'contact-confirm
:next-state contact)

)

(setf advance
(make-instance 'sync-state

:name 'advance : time-out 0.6
:next-state descent)

)

(setf ready
(make-instance 'async-state

:name 'ready : command 'deploy-command
:next-state advance)

)

(send return : set-next-state ready)

(setf state (cond ((equal a-state-name (send ready : state-name)

)

ready)
((equal a-state-name (send advance : state-name)

)

advance)
((equal a-state-name (send descent :state-name)

)

descent)
((equal a-state-name (send contact :state-name)

)

contact)
((equal a-state-name (send support :state-name)

)

support)
((equal a-state-name (send lift : state-name)

)

lift)
((equal a-state-name (send return : state-name)

)

return))

)

)

)

control-machine-t .lisp Wed Nov 28 10:11:00 1990

(defmethod (control-state-machine :change :before)

(cond ((typep state ' async-state)
(if (contact-sensor :sensing)

(setf observation 'contact-confirm)
(setf observation nil)

)

)))

(defmethod (control-state-machine : change)

(cond ((typep state 'async-state)
(if (send contact-sensor :sensing)

(setf observation 'contact-confirm)
(setf observation nil)

)

))

(cond ((typep state 'sync-state)
(setf state (send state :change)))

(t (setf state (send state :change command observation))))
;)

/(defmethod (control-state-machine :change :after)

; send command to executor with sync-state-time
(send executor :send-command (send state : state-name)

)

(if (typep state 'sync-state)
(send executor :set-time (send state :get-time)

)

(send executor :set-time nil)))

(defmethod (control-state-machine : send-command)
(a-command)

(setf command a-command))

display-t2.1isp Wed Nov 28 10:10:22 1990 1

;;; -*- Mode : Common-Lisp; Base: 10 -*-

.**

display .global

s

.**

(defvar eye-space nil)
(defvar middle-of-screen nil)

(defvar terrain- joystick)
(defvar graph-terrain)
(defvar graph-asv)

**

display .library

**

(defun draw-to-earth (a-point)
(let ((draw-pt (make-displayable

middle-of-screen
(transform eye-space a-point))))

(draw-to
(list (truncate (first draw-pt)

)

(truncate (second draw-pt))

)

robot-window))

)

(defun draw-to-earth-d (a-point)
(let ((draw-pt (make-displayable

middle-of-screen
(transform eye-space a-point)))

)

(draw-to-d
(list (truncate (first draw-pt))

(truncate (second draw-pt))

)

robot-window)))

(defun erase-to-e irth (a-point)
(let ((draw-pt (make-displayable

middle-of-screen
(transform eye-space a-point)))

)

(erase-to
(list (truncate (first draw-pt)

)

(truncate (second draw-pt))

)

robot-window)))

(defun eye-trans (eye-pt)
; eye-pt (radius alpha beta)

display-t2 .lisp Wed Nov 28 10:10:22 1990 2

; eye := orient* trans (0, 0, -r) *rot (x, -beta) *rot (y, -alpha) *trans (-x, -y, -z)

; returns eye-space
; library : ident, transmat, rotate, matrixmult

(let* ((orient (ident))
(rot nil) (trans nil) (eye nil)
(radius (first eye-pt)) (alpha (second eye-pt)) (beta (third eye-pt)

)

(center-of-interest (list (/ (send graph-terrain :max-x) 2)

(/ (send graph-terrain :max-y) 2) 0)))
(setf (aref orient 2 2) -1.0)
(setf trans (transmat (- radius)))
(setf eye (matrixmult orient trans)

)

(setf rot (rotatemat 'y-axis (- alpha)))
(setf eye (matrixmult eye rot))
(setf rot (rotatemat 'x-axis (- beta)))
(setf eye (matrixmult eye rot)

)

(setf trans (transmat (- (first center-of-interest)

)

(- (second center-of-interest)

)

(- (third center-of-interest)))

)

(matrixmult eye trans)))

(defun make-displayable (middle pt)
(let ((scale 5000.0)

(x (first pt)) (y (second pt)) (z (third pt))

)

(list (+ (* scale (/ x z)) (first middle))
(+ (* scale (/ y z)) (second middle)))))

(defun move-to-earth (a-point)
(let ((draw-pt (make-displayable

middle -of-screen
(transform eye-space a-point)))

)

(move-to
(list (truncate (first draw-pt)

)

(truncate (second draw-pt))))))

**

joystick flavor definition

**

(def flavor joystick ((joy-x 0) (joy-y 0) (joy-r 0)

)

: initable-instance-variables)

(defmethod (joystick :get- joy-value)

(let* ((key-value)
(delta-x 0.2) (delta-y 0.1) (delta-r 0.01))

(setf key-value (my-read-char-no-hang)

)

(cond ((equal key-value '#\f) (setf joy-x (+ joy-x delta-x)))
((equal key-value ' #\b) (setf joy-x (- joy-x delta-x)))

display-t2 . lisp Wed Nov 23 10:10:22 1990

(equal key-value '#\r) (setf joy-y (- joy-y delta-y))

)

(equal key-value '#\1) (setf joy-y (+ joy-y delta-y)))
(equal key-value '#\=) (setf joy-r (- joy-r delta-r))

)

(equal key-value ' #\-) (setf joy-r (+ joy-r delta-r))))
(cond ((>= joy-x 2) (setf joy-x 2))

(<= joy-x -2) (setf joy-x -2)))
(cond (

(>= joy-y 1) (setf joy-y 1)

)

(<= joy-y -1) (setf joy-y -1))

)

(cond (
(>= joy-r 0.1) (setf joy-r 0.1))
(<= joy-r -0.1) (setf joy-r -0.1)))

(cond ((equal key-value '#\q) (setf joy-x 0)

(setf joy-y 0) (setf joy-r 0)))
(list joy-x joy-y joy-r (equal key-value '#\x))))

(defmethod (joystick : reset)

(setf joy-x 0)

(setf joy-y 0)

(setf joy-r 0))

(setf terrain- joystick (make-instance ' joystick)

)

**

terrain flavor definition

**

(defflavor terrain ((terrain-data (make-array '(49 49) : initial-element 0))
terrain-height-array terrain-height-list joystick
(cursor-x) (cursor-y) (max-x) (max-y)
(radius 500) (alpha 0) (beta 0))

: initable-instance-variables
: gettable-instance-variables)

(defmethod (terrain :create)

(send self :initti)
(send self rmodify)
(my-print "Now use joystick to control the robot."))

(defmethod (terrain :kill)

(kill-robot -terrain-windows)
(restore-lisp-listener)

)

(defmethod (terrain :initti)

; globals : middle-of-screen, eye-space
(move-and-shape-lisp- listener)

display-t2.1isp Wed Nov 28 10:10:22 1990 4

(let ((array-dims (array-dimensions terrain-data))

)

(setf radius 500 alpha beta 0)

(setf max-x (first array-dims)

)

(setf max-y (second array-dims)

)

(setf cursor-x (floor (/ max-x 2)))
(setf cursor-y (floor (/ max-y 2))))

(setf terrain-height-array (make-array (+ max-x 1))

)

(make- robot -window)
(setf middle-of-screen

(middle-of-robot-window)

)

(setf eye-space (eye-trans (list 500 0)))
(send self : input-terrain-parameters)
(my-print "Please use joystick to transform the terrain.")
(my-print "Wait.")
(make-visible)
(send self :erase-obstacles)
(my-print "Now you can translate the terrain."))

(defmethod (terrain :modify)
()

; external : eye-space
(do ((delta 0.0001)

(joystick-value nil)
(end-flag nil)

)

(end-flag (my-print "Wait.")
(send joystick : reset)
(send self : save-terrain eye-space)
(send self : draw-obstacles)

)

(make-visible)
(setf joystick-value (send joystick :get- joy-value)

)

(let ((x (first joystick-value)

)

(y (second joystick-value)

)

(r (third joystick-value)

)

(fire (fourth joystick-value))

)

(send self :era3e-terrain)
(cond

(fire (cond ((user-ok)
(cond ((user-save)

(send self :save-terrain-to-disk (user-file-name))))
(setf end-flag t)

)

(t

(send joystick : reset)
(setf joystick-value (send joystick :get- joy-value))))

)

((> x delta) (setf alpha (+ alpha 0.05))
((< x (- delta)) (setf alpha (- alpha 0.05))
((> y delta) (setf beta (+ beta 0.05))
((< y (- delta)) (setf beta (- beta 0.05))
((> r delta) (setf radius (+ radius 10))
((< r (- delta)) (setf radius (- radius 10))))

(setf eye-space (eye-trans (list radius alpha beta))

)

(send self :draw-terrainl eye-space))))

(defmethod (terrain : in-side-of-whole-terrain)
(a-pos)

(let ((dimension-terrain (array-dimensions terrain-data)

)

(i-x (floor (first a-pos))

)

(i-y (floor (second a-pos)))

)

(cond ((< i-x 0) nil)

display-t2 .lisp Wed Nov 28 10:10:22 1990 5

((< i-y 0) nil)
((> i-x (- (first dimension-terrain) 1)) nil)

((> i-y (- (second dimension-terrain) 1)) nil)
(T))

))

(defmethod (terrain :permitted-cell)
(terrain-pos)

(let ((i-x (floor (first terrain-pos))) ; find terrain index
(i-y (floor (second terrain-pos)))

)

(if (send self : in-side-of-whole-terrain terrain-pos)
(if (equal (aref terrain-data i-x i-y) 0) ; permitted

t

nil))))

(defmethod (terrain :terrain-point)
(a-pos-wrt-earth)

(let* ((x (first a-pos-wrt-earth)

)

(y (second a-pos-wrt-earth)

)

(z (send self :get-height (list x y)))

)

(list x y z))

)

(defmethod (terrain : get-height)
(a-pos-wrt-earth)

; range =< x <= (first dimension-terrain-height), (0 < x <39)
; =< y <= (second dimension-terrain)

.

(let* ((dimension-terrain-height (array-dimensions terrain-height-array)

)

(x-min 0) (x-max (first dimension-terrain-height))

(x (first a-pos-wrt-earth))

)

(if (or (< x x-min) (> x x-max)

)

-1000
(let* ((i-x (floor x)

)

; get terrain x-index
(xl (if (< (- x i-x) 0.5) (- i-x 1) i-x))
(x2 (if (< (- x i-x) 0.5) i-x (+ i-x 1)))
(xl (if (< xl x-min) xl)

)

(x2 (if (>= x2 x-max) (- x-max 1) x2))
(zl (aref terrain-height-array xl)

)

(z2 (aref terrain-height-array x2)

)

(slope (- z2 zl)

)

(del-x (- x xl))

)

(+ zl (* slope del-x)))))

)

(setf graph-terrain (make-instance 'terrain
: joystick terrain- joystick)

)

it***-****-***-******-***********************-)!*****************

; terrain . input-terrain-parameters

display-t2.1isp Wed Nov 28 10:10:22 1990

**

(defmethod (terrain : input-terrain-parameters)

(initialize -menu-variables)
(cond ((setf *old-terrain-f ile-name* (get-old-terrain-file-name)

)

(send graph-terrain : read-terrain-f rom-disk *old-terrain-file-name*)

)

(t

(send self :get-new-terrain)))

)

(defmethod (terrain : get-new-terrain)

(send self :get-new-terrain-height)
(send self :draw-terrain eye-space)
(send self : set-new-terrain-obstacles)
(send self : set-new-ditch)

)

(defmethod (terrain : get-new-terrain-height)

(let ((slope-type (get-terrain-slope-type)

)

(angle nil) (data nil)

)

(cond ((equal slope-type 'single-angle)
(setf angle (get-terrain-slope-angle))

)

((equal slope-type 'manual)
(setf data (get-terrain-slope-data)))

)

(my-print "Wait.")
(send self : read-terrain-height slope-type angle data)))

(defmethod (terrain : set-new-terrain-obstacles)

(let ((terrain-type (get-terrain-obstacle-type)

)

(values nil)
(obstacle-ratio nil) (random-seed nil)

)

(cond ((equal terrain-type 'random)
(setf values (get-terrain-random-data)

)

(setf obstacle-ratio (first values)

)

(setf random-seed (second values)

)

(my-print "Wait .

"

)

(send self : random-terrain obstacle-ratio random-seed))
(t

(send self :display-cursor))))

)

(defmethod (terrain : set-new-ditch)

(let ((ditch-type (get-ditch-type))
(width-location nil)

)

(cond ((equal ditch-type 'add-ditch)
(setf width-location (get-ditch-width-location))

(my-print "Wait .

"

)

(send self : add-ditch (first width-location)
(second width-location)

)

(send self : draw-obstacles)
(make-visible)

)

display-t2.1isp Wed Nov 28 10:10:22 1990

(t nil)))

)

.a***

terrain .display-terrain

.••A***

(defmethod (terrain :display-cursor)
()

(send self :make-all-permitted)
(do ((joy-data nil) (x nil) (y nil) (r nil) (fire nil)

(exit-flag nil)

)

(exit-flag (send self :erase-cursor (list cursor-x cursor-y))

)

(make-visible)
(setf joy-data (send joystick :get- joy-value)

)

(setf x (- (second joy-data))) (setf y (first joy-data)

)

(setf r (third joy-data)) (setf fire (fourth joy-data)

)

(send self :erase-cursor (list cursor-x cursor-y)

)

(cond
(fire (setf exit-flag t)

)

((> x 0) (setf cursor-x (+ cursor-x 1)) (if (> cursor-x max-x)
(setf cursor-x max-x))

)

((< x 0) (setf cursor-x (- cursor-x 1)) (if (< cursor-x 0)

(setf cursor-x 0)))
((> y 0) (setf cursor-y (+ cursor-y 1)) (if (> cursor-y max-y)

(setf cursor-y max-y))

)

((< y 0) (setf cursor-y (- cursor-y 1)) (if (< cursor-y 0)

(setf cursor-y 0))

)

((< r 0) (setf (aref terrain-data cursor-x cursor-y) 1))

((> r 0) (setf (aref terrain-data cursor-x cursor-y) 1)))
(send self :draw-cursor (list cursor-x cursor-y)

)

(send self :draw-obstacles)
(send joystick :reset)))

(defmethod (terrain :draw-terrain)
(eye-space)

; external function: \display . library\move-to-earth, draw-to-earth
(dotimes (x (+ max-x 1)

)

(move-to-earth (list x (aref terrain-height-array x))

)

(draw-to-earth (list x max-x (aref terrain-height-array x)))

)

(dotimes (y (+ max-y 1)

)

(move-to-earth (list y 0))
(dotimes (x (+ max-x 1)

)

(draw-to-earth (list x y (aref terrain-height-array x)))))

)

(defmethod (terrain :draw-terrainl)
.(eye-space)

; external function: \display .library\move-to-earth, draw-to-earth
(do ((xs (list max-x) (cdr xs)

)

(x nil)

)

((null xs)

)

(setf x (car xs)

)

(move-to-earth (list x (aref terrain-height-array x))

)

(draw-to-earth (list x max-x (aref terrain-height-array x)))

)

display-t2 .lisp Wed Nov 28 10:10:22 1990 8

(do { (ys (list max-y) (cdr ys))

(y nil)

)

((null ys)

)

(setf y (car ys)

)

(move-to-earth (list y 0))

(dotimes (x (+ max-x 1))

(draw-to-earth (list x y (aref terrain-height-array x)))))

)

(defmethod (terrain :erase-obstacles)

; externals : terrain
; external function: \display . library\move-to-earth, draw-to-earth

(dotimes (i (first (array-dimensions terrain-data))

)

(dotimes (j (second (array-dimensions terrain-data)))
(cond ((equal 1 (aref terrain-data i j))

(move-to-earth (list i j))
(erase-to-earth (list (+ i 1) (+ j 1))

)

(move-to-earth (list (+ i 1) j))
(erase-to-earth (list i (+ j 1))))))))

(defmethod (terrain :erase-terrain)

(clear-robot-window)

)

(defmethod (terrain :make-all-permitted)

(dotimes (i max-x)
(dotimes (j max-y)

(setf (aref terrain-data i j) 0))))

(defmethod (terrain : read-terrain-height)
(terrain-slope-type terrain-slope-angle terrain-slope-data)

(cond ((equal terrain-slope-type 'default)
(setf terrain-height-list '((19 0) (25 1) (35 1.5))))

((equal terrain-slope-type 'single-angle)
(let* ((angle (* pi (/ terrain-slope-angle 180)))

(max (* 20 (tan angle))))
(setf terrain-height-list

(list ' (20 0)

(list 40 max)

))))
(t (setf terrain-height-list terrain-slope-data)))

(let* ((xl 0) (zl 0) (a-pair) (zz 0)

(x2 (first (car terrain-height-list))

)

(z2 (second (car terrain-height-list)))
(slope (/ (- z2 zl) (- x2 xl)))

)

(setf terrain-height-list (cdr terrain-height-list)

)

(dotimes (i (+ max-x 1)

)

(setf zz (+ (* slope (- i xl)) zl))
(cond ((equal x2 i)

(setf xl x2)
(cond ((setf a-pair (car terrain-height-list)

)

(setf terrain-height-list (cdr terrain-height-list)

)

(setf x2 (first a-pair)

)

(setf z2 (second a-pair)

)

(setf zl zz)

display-t2.1isp Wed Nov 28 10:10:22 1990 9

(setf slope (/ (- z2 zl) (- x2 xl))))
(T (setf slope 0) (setf zl zz))))

)

(setf (aref terrain-height-array i) zz)))

)

(defmethod (terrain : save-terrain)
(eye-space)

(send self :draw-obstacles)
(send self :draw-terrain eye-space)
(save-terrain-to-terrain-buffer)

)

(defmethod (terrain : save-terrain-to-disk)
(file-name)

(with-open-file
(out-file

(merge-pathnames file-name "robot : kwak . robot . terrain-data data") rdirection :outp

)

(setf *print-array* t)

(print terrain-data out-file)
(print terrain-height-array out-file)
(print radius out-file)
(print alpha out-file)
(print beta out-file)
(setf *print-array* nil))

)

(defmethod (terrain : read-terrain-f rom-disk)
(file-name)

(with-open-file
(input-file

(merge-pathnames file-name "robot : kwak . robot .terrain-data; ") rdirection :input)
(setf *print-array* t)

(setf terrain-data (read input-file)

)

(setf terrain-height-array (read input-file)

)

(setf radius (read input-file)

)

(setf alpha (read input-file)

)

(setf beta (read input-file)

)

(setf *print-array* nil))

)

**

terrain .display-cursor

**

(defmethod (terrain : draw-cursor
(position)

(let* ((x (first position))
(y .(second position))

(pi (list (+ x 0.2) (+

(p2 (list (+ x 0.8) (+

(p3 (list (+ x 0.8) (+

(p4 (list (+ x 0.2) (+

(points (list p2 p3 p4 pi)))
(move-to-earth pi)
(do ((points points (cdr points)))

y .2) 0))

y .2) 0))

y 8) 0))

y .8) 0))

y .2) 0))

y .2) 0))

y .8) 0))

y .8) 0))

display-t2.1isp Wed Nov 28 10:10:22 1990 10

((null points) 'done-draw-cursor)
(draw-to-earth (car points)))))

(defmethod (terrain :draw-obstacles)
()

(dotimes (i max-x)
(dotimes (j max-y)

(cond ((equal 1 (aref terrain-data i j))
(move-to-earth

(list i j (aref terrain-height-array i))

)

(draw-to-earth
(list (+ i 1) (+ j 1) (aref terrain-height-array (+ i 1)))

)

(move-to-earth
(list (+ i 1) j (aref terrain-height-array (+ i 1)))

)

(draw-to-earth
(list i (+ j 1) (aref terrain-height-array i)))))))

)

(defmethod (terrain :erase-cursor)
(position)

(let* ((x (first position)

)

(y (second position)

)

(pi (list (+ x 0.2) (+

(p2 (list (+ x 0.8) (+

(p3 (list (+ x 0.8) (+

(p4 (list (+ x 0.2) (+

(points (list p2 p3 p4 pi))

)

(move-to-earth pi)
(do ((points points (cdr points))

)

((null points) ' done-erase-cursor)
(erase-to-earth (car points))))

)

(defmethod (terrain : random-terrain)
(obstacle-ratio random-seed)

(let ((a 43411) (b 17) (c 640001) (percent nil) (seed nil) (x nil)
(setf percent obstacle-ratio)
(setf seed random-seed)
(setf x seed)
(dotimes (i max-x)

(dotimes (j max-y)
(if (< (/ (setf x (mod (+ (* a x) b) c)) c) (/ percent 100))

(setf (aref terrain-data i j) 1)))))
(send self :draw-obstacles)

)

(defmethod (terrain :add-ditch)
(width location)

(dotimes (i width)
(dotimes (j max-y) '

(setf .(aref terrain-data (+ i location) j) 1))))

**

graph-vehicle flavor definition

display-t2.1isp Wed Nov 28 10:10:22 1990 11

.**

(def flavor graph-vehicle ((vehicle-points (make-array 28))
(body-points (make-array 10))
(polygons (make-array 13)

)

(numpolys nil)
(vertices (make-array 100))

)

: initable-instance-variables)

(defmethod (graph-vehicle :init-data)

(send self : read-vehicle-data)) ; read data from disk

(defmethod (graph-vehicle :display)
(a-H foot-positions)

(clear-robot -window)
(send self :body-pento-wrt-earth a-H foot-positions)
(send self :draw-vehicle vehicle-points)
(copy-terrain-to-robot -window)
(make-visible)

)

(defmethod (graph-vehicle : read-vehicle-data)

global variables : vehicle-points, polygons, numpolys, vertices
format of file : num-of-points num-of-polygons

(num a-vehicle-point)
(num-of-vertices vertices-number-of-a-polygon) . .

.

(let* ((vehicle-file (open "exp3 :kwak . robot /vehicle .data")

)

(numpts (read vehicle-file)

)

(numvtces 0) (a-polygon nil))
(setf numpolys (read vehicle-file)

)

(dotimes (i numpts)
(setf (aref vehicle-points i) (cdr (read vehicle-file)))

)

(dotimes (i 10)
(setf (aref body-points i) (aref vehicle-points i))

)

(dotimes (i numpolys)
(setf a-polygon (read vehicle-file)

)

(setf (aref polygons i) (list numvtces (car a-polygon))

)

(do ((a-polygon-vertices (cdr a-polygon) (cdr a-polygon-vertices)
(j (+ j 1)))

((null a-polygon-vertices)

)

(setf (aref vertices (+ numvtces j))
(- (first a-polygon-vertices) 1)))

(setf numvtces (+ numvtces (car a-polygon))))
(close vehicle-file))

)

[setf graph-asv (make-instance 'graph-vehicle))

**

graph-vehicle .display

display-t2.1isp Wed Nov 28 10:10:22 1990 12

**

(defmethod (graph-vehicle :body-pento-wrt-earth)
(a-H foot-positions)

; library : transform
(let ((si 0.6616) (s2 0.945) (s3 3.308) (1 0.8133) (m 1.0467)

(hipx-list '(5.1667 5.1667 0.0 0.0 -4.9167 -4.9167))
(hipx-list '(6.0 6.0 0.0 0.0 -6.0 -6.0))
(hipy-list '(1.62 -1.62 1.62 -1.62 1.62 -1.62))
(signl-list '(1-1 1-1 1 -1))
(sign2-list '(1 1 1 1-1-1)))

(send self :transform-body-points a-H body-points)
(do ((positions foot-positions (cdr positions)

)

(hipx-list hipx-list (cdr hipx-list)

)

(hipy-list hipy-list (cdr hipy-list)

)

(signl-list signl-list (cdr signl-list)

)

(sign2-list sign2-list (cdr sign2-list)

)

(i (+ i 1)))

((null positions) nil)
(let* ((foot-pos (car positions)

)

(hipx (car hipx-list)) (hipy (car hipy-list)

)

(signl (car signl-list)) (sign2 (car sign2-list)

)

(px (- (first foot-pos) hipx)

)

(py (- (second foot-pos) hipy)

)

(pz (third foot-pos)

)

(theta (vehicle-theta py pz m signl)

)

(dm (vehicle-dm px sign2)

)

(dl (vehicle-dl py pz m 1)

)

(top-pos nil) (knee-pos nil)

)

(setf top-pos
(transform a-H

(vehicle-top-pos hipx hipy m 1 dl theta signl))

)

(setf knee-pos
(transform a-H

(vehicle-knee-pos hipx hipy m 1 si s2 s3
dl dm theta signl sign2))

)

(setf foot-pos (transform a-H foot-pos)

)

(setf (aref vehicle-points (+ 10 (* 3 i))

)

top-pos)
(setf (aref vehicle-points (+ 11 (* 3 i))

)

knee-pos)
(setf (aref vehicle-points (+ 12 (* 3 i))

)

foot-pos))))

)

(defmethod (graph-vehicle :draw-vehicle)
(vehicle-point3)

; global variables : polygons, numpolys, vertices
(dotimes (i numpolys)

(let ((start (first (aref polygons i))

)

(num-vertices (second (aref polygons i)))

)

(move-to-earth (aref vehicle-points
(aref vertices start)))

(dotimes (j num-vertices)
(draw-to-earth-d (aref vehicle-points

(aref vertices (+ start j)))))
)))

display-t2.1isp Wed Nov 28 10:10:22 1990 13

**

graph-vehicle .display .body-pento-wrt-earth

**

(defmethod (graph-vehicle : transform-body-points)
(a-H body-points)

; globals : vehicle-points
; library : transform

(dotimes (i 10)
(setf (aref vehicle-points i)

(transform a-H (aref body-points i))))

)

(defun vehicle-dl (py pz m 1)

(/ (- (sqrt (+ (* py py) (* pz pz) (- (* m m)))) 1)

4))

(defun vehicle-dm (px sign2)
(* sign2 (/ px 5)))

(defun vehicle-knee-pos (hipx hipy m 1 si s2 s3
dl dm theta signl sign2)

(let* ((numer (+ (* si si) (- (* s2 s2)) (* dl dl) (* dm dm))

)

(denom (* 2 si (sqrt (+ (* dl dl) (* dm dm)))))
(beta (acos (/ numer denom))

)

(alpha (- (/ pi 2) (atan dm dl) beta))
(sina (sin alpha)) (cosa (cos alpha)

)

(sint (sin theta)) (cost (cos theta)

)

(temp (- (* s3 sina) (- dl 1)))
(xk (+ (* sign2 s3 cosa) hipx))
(yk (+ (* signl (+ (* temp sint) (* m cost))) hipy))
(zk (- (+ (* temp cost) (* m sint)))))

(list xk yk zk))

)

(defun vehicle-theta (py pz m signl)
(let* ((anglel (atan (* signl py) (* -1 pz))

)

(angle2 (atan m (sqrt (+ (* py py)
(* pz pz)
(- (* m m)))))))

(- anglel angle2))

)

(defun vehicle-top-pos (hipx hipy m 1 dl theta signl)
(let* ((xt hipx)

(1-dl (- 1 dl)

)

(sina (sin theta)

)

(cosa (cos theta)

)

(yt (+ (* signl (+ (* m cosa) (* 1-dl sina))) hipy))
(zt (- (* m sina) (* 1-dl cosa))))

(list xt yt zt))

)

ditch-robot-t .lisp Thu Nov 29 11:28:36 1990

;;; -*- Mode : Common-Lisp; Base: 10 -*-

ditch-robot definition

(defflavor ditch-robot ()

(test -over lap-robot)
)

(defmethod (ditch-robot :initti)

(send graph-asv :init-data)
(setf vision-system (make-instance 'ditch-vision-system :owner self))
(send vision-system :initti)
(setf joystick (make-instance 'joystick))
(send joystick : reset)
(empty-queue lift-queue)
(setf lift-flag t)

(let ((H))
(setf body (make-instance 'stop-body :owner self))
(setf H (send body :initti))
(setf legs (list

(make-instance 'test-overlap-leg :name ' legl : owner self)
(make-instance 'test-overlap-leg : name ' leg2 :owner self)
(make-instance 'test-overlap-leg :name ' leg3 rowner self)
(make-instance 'test-overlap-leg :name ' leg4 :owner self)
(make-instance 'test-overlap-leg :name ' leg5 :owner self)
(make-instance 'test-overlap-leg :name ' leg6 : owner self)
))

(mapcar #' (lambda (a-leg) (send a-leg :initti H)) legs))
)

(defmethod (ditch-robot :at-stability-limit)

(not (send self :stable)))

(defmethod (ditch-robot : stop-motion)

(send body : stop-body-motion)

)

(defmethod (ditch-robot : resume-motion)

(send body : restore-body-motion)
t)

i

**

(defun at_stability_limit
(send asv : at-stability-limit)

)

ditch-robot-t .lisp Thu Nov 29 11:28:36 1990

(defun stop_motion ()

(send asv : stop-motion)

)

(defun resume_motion ()

(send asv : resume-motion)

)

ditch-vision-t .lisp Thu Nov 29 11:28:50 1990

; ; ; -*- Mode : Common-Lisp; Base: 10 -*-

ditch-vision-system definition

(defflavor ditch-vision-system ()

(vis ion-system)
)

(defmethod (ditch-vision-system :on-ditch-area)
(body-HIO)

(let ((x (aref body-HIO 3)))
(cond ((and (>= x (- 21 7))

(<- x (+ 21 *ditch-width*))

)

t)

(t nil))))

(setf *ditch-width* 6)

exacutor-t .lisp Wed Nov 28 10:10:55 1990

;;; -*- Mode : Common-Lisp; Base: 10 -*-

executor flavor definition

(defflavor executor
(leg-pos-wrt-body desired-foothold-pos-wrt -earth

time command owner sensor (lift-height 1.4)
(Tl 0.6) (T2 1.0) (T3 0.4) (T4 0.6)
(planned-contact-time 0.4) self-time
(sampling-time 0.1) ready-pos
HI inv-Hl body-trans-ratel body-rotate-ratel)

: init able-instance -variables)

(defmethod (executor : set-desired-pos)
(a-pos)

(setf desired-foothold-pos-wrt-earth a-pos)

)

(defmethod (executor :get-desired-pos)

desired-foothold-pos-wrt -earth)

(defmethod (executor : send-command)
(a-command)

(setf command a-command)

)

(defmethod (executor : set-time)
(a-time)

(setf time a-time)

)

(defmethod (executor : leg-pos-wrt-body)

leg-pos-wrt-body)

(defmethod (executor :move)
(H inv-H body-trans-rate body-rotate-rate)

(setf HI H)

(setf inv-Hl inv-H) '

(setf bodyrtrans-ratel body-trans-rate)
(setf body-rotate-ratel body-rotate-rate)
(cond ((equal command 'ready)

(send self :move-in-ready))

((equal command 'advance)
(send self :move-in-advance)

)

((equal command 'descent)
(send self :move-in-descent)

)

executor-t .lisp Wed Nov 28 10:10:55 1990

((equal command 'contact)
(send self :move-in-contact)

)

((equal command 'support)
(send self :move-in-support)

)

((equal command 'lift)
(send self :move-ift-lift)

)

((equal command 'return)
(send self :move-in-return)

)

)

(defmethod (executor :move-in-contact)

(let ((leg-velocity-wrt-body (send self :find-velocity-wrt-body))

)

(setf leg-pos-wrt-body
(vectadd (magvect sampling-time leg-velocity-wrt-body)

leg-pos-wrt-body)))

)

(defmethod (executor : find-velocity-wrt-body)

; returns foot-velocity-wrt-body
; velocity = - (body-trans-rate + body-rotate-rate X leg-pos)

; globals v : body-trans-ratel, body-rotate-ratel
; lib : vectsub, vectadd, crossprod

(vectsub ' (0 0)

(vectadd body-trans-ratel
(crossprod body-rotate-ratel leg-pos-wrt-body))

)

(defmethod (executor :move-in-advance)

(let ((desired-pos (send self :desired-advance-pos-wrt-body))

(dt (- Tl time))

)

(send self :move-del desired-pos leg-pos-wrt-body dt)

)

(setf self-time 0.0))

(defmethod (executor :desired-advance-pos-wrt-body)

; a-pos is desired-stepping-pos-wrt -earth
; returns desired-pos-wrt-body in deploy state
; global variable : HI, inv-Hl
; global function : to-earth-transform, to-body-transform, find-terrain-hegiht

(let* ((desired-pos-wrt-earth desired-foothold-pos-wrt-earth)
(terrain-height (third (send owner : terrain-point desired-pos-wrt-earth)))
(desired-pos-height-wrt-earth (+ terrain-height lift-height)

)

(pos-wrt-earth (list (first desired-pos-wrt-earth)
(second desired-pos-wrt-earth)
desired-pos-height-wrt-earth))

)

(to-body-transform inv-Hl pos-wrt -earth))

)

(defmethod (executor :move-in-descent)

; global function : to-body-transform
; global variables : inv-Hl

(let ((dt (- planned-contact-time self-time))

)

(if (< dt 0.05)

executor-t .lisp Wed Nov 28 10:10:55 1990 3

(setf leg-pos-wrt-body (to-body-transform
inv-Hl desired-foothold-pos-wrt-earth)

)

(send self :rnove-del
(to-body-transform inv-Hl desired-foothold-pos-wrt-earth)
leg-pos-wrt-body dt))

)

;)

; (defmethod (executor :move-in-descent : after)

(setf self-time (+ self-time sampling-time))

)

(defmethod (executor :move-del)
(desired-pos present-pos dt)

; set new leg-pos depending on the arguments
; lib : vectadd, magvect

(if (< dt 0.05)
(setf leg-pos-wrt-body desired-pos)
(let* ((inv-time-dif f (/ 1 dt)

)

(del (vectsub desired-pos present-pos)

)

(velocity (magvect inv-time-dif f del))

)

(setf leg-pos-wrt-body
(vectadd present-pos (magvect sampling-time velocity)))))

)

(defmethod (executor :move-in-lift)

(let* ((dt (- T3 time)

)

(desired-pos (send self : lift-pos-desired)

)

(z (third desired-pos))

)

(send self :move-del desired-pos leg-pos-wrt-body dt)
(setf ready-pos

(list (first ready-pos) (second ready-pos) z)))

)

(defmethod (executor : lift-pos-desired)
; returens position-wrt-body which will be at the end of lift state.
; global f : to-body-transform,
; global v : inv-Hl

(let* ((leg-pos-wrt-earth (to-earth-transform HI leg-pos-wrt-body)

)

(desired-height (+ lift-height (third (send owner :terrain-point leg-pos-wrt-ee
h)))))

(to-body-transform inv-Hl (list (first leg-pos-wrt-earth)
(second leg-pos-wrt-earth)
de ;,i red-height))))

(defmethod (executor :move-in-ready)
'

(setf leg-pos-wrt-body ready-pos)

)

(defmethod (executor :move-in-return)

; Modifying leg-pos-z is redundent but it can correct disturbance by itself
(let ((dt (- T4 time)

)

executor-t . lisp Wed Nov 28 10:10:55 1990

(desired-pos ready-pos)

)

(send self :move-del desired-pos leg-pos-wrt-body dt)))

(defmethod (executor :move-in-support)

; globals : body-trans-ratel, body-rotate-ratel
; lib : vectadd, magvect
; In general terrain, leg-pos-z should be updated by real terrain height

(let ((leg-velocity-wrt-body (send self :find-velocity-wrt-body))

)

(setf leg-pos-wrt-body
(vectadd (magvect sampling-time leg-velocity-wrt-body)

leg-pos-wrt-body)))

)

((x

(y
(z

(cond (

(defmethod (executor rinitti)
(leg-name init-H)

(setf sensor (send owner : contact-sensor)

)

(let ((x (aref init-H 3))
(aref init-H 1 3)

)

(aref init-H 2 3)))
(equal leg-name 'legl)
(setf ready-pos ' (5 3 -4))
(setf leg-pos-wrt-body (list 6 3 (- z))

)

(setf desired-foothold-pos-wrt -earth (list (+ x 6)

((equal leg-name 'leg2)
(setf ready-pos ' (5 -3 -4))
(setf leg-pos-wrt-body (list 5-3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list
((equal leg-name 'leg3)
(setf ready-pos ' (3 -4)

)

(setf leg-pos-wrt-body (list 3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list
((equal leg-name 'leg4)
(setf ready-pos ' (-3 -4)

)

(setf leg-pos-wrt-body (list 0-3 (- z))

)

(setf desired-foothold-pos-wrt-earth (li3t
((equal leg-name 'leg5)
(setf ready-pos ' (-5 3 -4)

)

(setf leg-pos-wrt-body (list -5 3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (- x
((equal leg-name 'leg6)
(setf ready-pos ' (-5 -3 -4)

)

(setf leg-pos-wrt-body (list -5 -3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (- x 5) (- y 3) 0))))

)

)

(+ y 3) 0))

)

(+ x 5) (- y 3) 0)))

(+ x 0) (+ y 3) 0)))

(+ x 0) (- y 3) 0)))

5) (+ y 3) 0))

)

f-load-t-444.1isp Thu Nov 29 11:29:28 1990

; ; ; -*- Mode : Common-Lisp; Base: 10 -*-

load file (f-load-t-444 . lisp)

; graph-terrain is used in sensor and vision

; Overlapped working volume (1 foot)
; Front and rear are not extended.

; logic change

(load "robot : kwak . robot ;math-t"

)

(load "robot : kwak . robot ; user-interface-t2"

)

(load " robot : kwak . robot ;
graph-t 1

"

)

(load "robot :kwak. robot ;display-t2")

(load "robot : kwak . robot 1 ; vision-t"

)

(load "robot :kwak. robot 5; ditch-vision-t")

(load " robot : kwak . robot ; tkm-t "

)

(load "robot :kwak . robot 4; overlap-tkm-t")
(load "robot : kwak . robot 1 ; foothold-t "

)

(load "robot : kwak . robot4 ; overlap-foothold-t"

)

(load "robot : kwak . robot ; sensor-t"

)

(load "robot : kwak . robotl;executor-t")
(load "robot :kwak . robot ;control-machine-t")
(load "robot :kwak. robot ;plan-machine-t")
(load " robot : kwak . robot 1 ; leg-t "

)

(load "robot :kwak. robot 4; overlap- leg-t")
(load "robot :kwak. robot 5; test-overlap-leg-t-441")

(load " robot : kwak . robot ; stability-t2 "

)

(load "robot : kwak. robot ; support -plane-t")
(load "robot :kwak. robot ;h-calculator-t")
(load "robot :kwak. robot ; command- regulator-t")
(load "robot :kwak. robot ;terrain-regulator-t")
(load "robot : kwak. robot ;body-controller-t")
(load "robot :kwak. robot l;body-t")
(load "robot : kwak. robot 6 ; stop-body-t")

(load " robot : kwak . robot 1 ; robot -t 1
"

)

(load " robot : kwak . robot 4 ; overlap-robot -t "

)

(load "robot : kwak. robot 5; test-overlap-robot-t-4 42")
(load "robot :kwak. robot6;ditch-robot-t")

(load " robot : kwak . robot 6 ; robot 4 44")

(load "robot : kwak . robot ; add-to-system-menu"

)

(setf asv (ma'ke-instance 'ditch-robot))

foothold-t . lisp Thu Nov 29 11:29:51 1990

; ;
-*- Mode : Common-Lisp; Base: 10 -*-

foothold-finder definition

(def flavor foothold-finder (sixteen-footholds
four-lines tkm-calculator
(no-cell-available-flag nil)
(TKM-margin 0.4) owner)

: initable-instance-variables)

(defmethod (foothold-finder :initti)
(leg-name)

(cond ((equal leg-name 'legl)
(setf sixteen-footholds

((7.3 4.3) (7.3 3.3) (7.3 2.3) (7.3 1.3)

(6.3 4.3) (6.3 3.3) (6.3 2.3) (6.3 1.3)

(5.3 4.3) (5.3 3.3) (5.3 2.3) (5.3 1.3)
(4.3 4.3) (4.3 3.3) (4.3 2.3) (4.3 1.3)))

(setf four-lines
'

(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.
((equal leg-name 'leg2)
(setf sixteen-footholds

' ((7.3 -4.3) (7

(6.3 -4.3) (6

(5.3 -4.3) (5

(4.3 -4.3) (4

(setf four-lines
' (((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.

((equal leg-name 'leg3)
(setf sixteen-footholds

' ((1.5
(0.5
(-0.5
(-1.5

3)

,3)

3)

3)

(1

(

(-0

(-1
(setf four-lines

'
(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.
((equal leg-name 'leg4)
(setf sixteen-footholds

' ((1.5 -4.3) (1

(0.5 -4.3) (

(-0.5 -4.3) (-0

(-1.5 -4.3) (-1

(setf four-lines
'

(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.

9397) (8.0832 2.7339 0))
9397) (8.0832 2.7339 0)

)

9397) (3.4167 2.7339 0)

)

9397) (3.4167 2.7339 0))))

)

.3 -3.3) (7.3 -2.3) (7.3 -1.3)

.3 -3.3) (6.3 -2.3) (6.3 -1.3)

.3 -3.3) (5.3 -2.3) (5.3 -1.3)

.3 -3.3) (4.3 -2.3) (4.3 -1.3))

)

9397) (8.0832 -2.7339 0)

)

9397) (8.0832 -2.7339 0)

)

9397) (3.4167 -2.7339 0)

)

9397) (3.4167 -2.7339 0))))

)

.5 3.3) (1.5 2.3) (1.5 1.3)

.5 3.3) (0.5 2.3) (0.5 1.3)

.5 3.3) (-0.5 2.3) (-0.5 1.3)

.5 3.3) (-1.5 2.3) (-1.5 1.3)))

9397) (2.2915 2.7339 0)

)

9397) (2.2915 2.7339 0)

)

9397) (-2.2915 2.7339 0)

)

9397) (-2.2915 2.7339 0)))))

.5 -3.3) (1.5 -2.3) (1.5 -1.3)

.5 -3.3) (0.5 -2.3) (0.5 -1.3)

.5 -3.3) (-0.5 -2.3) (-0.5 -1.3)

.5 -3.3) (-1.5 -2.3) (-1.5 -1.3))

9397) (2.2915 -2.7339 0)

)

9397) (2.2915 -2.7339 0)

)

9397) (-2.2915 -2.7339 0)

)

9397) (-2.2915 -2.7339 0))))

)

foothold-t . lisp Thu Nov 29 11:29:51 1990

((equal leg-name 'leg5)
(setf sixteen-footholds

'
((-4.0 4.3) (-4.0 3. 3) (-4.0
(-5.0 4.3) (-5.0 3..3) (-5.0
(-6.0 4.3) (-6.0 3.,3) (-6.0
(-7.0 4.3) (-7.0 3,,3) (-7.0

(setf four-lines
'

(((0 0.3420 -0.9397) (-3.3332
((0 -0.3420 -0.9397) (-3.3332
((0 -0.3420 -0.9397) (-7.8332
((0 0.3420 -0.9397) (-7.8332

((equal leg-name 'leg6)
(setf sixteen-footholds

'
((-4.0 -4.3) (-4.0 -3 .3) (-4.0
(-5.0 -4.3) (-5.0 -3 .3) (-5.0
(-6.0 -4.3) (-6.0 -3 .3) (-6.0
(-7.0 -4.3) (-7.0 -3 .3) (-7.0

(setf four-lines
'

(((0 0.3420 -0.9397) (-3.3332
((0 -0.3420 -0.9397) (-3.3332

((0 -0.3420 -0.9397) (-7.8332
((0 0.3420 -0.9397) (-7.8332

2.3) (-4.0 1.3)
2.3) (-5.0 1.3)
2.3) (-6.0 1.3)
2.3) (-7.0 1.3)))

2.7339 0)

)

2.7339 0)

)

2.7339 0)

)

2.7339 0))))

)

-2.3) (-4.0 -1.3)
-2.3) (-5.0 -1.3)
-2.3) (-6.0 -1.3)
-2.3) (-7.0 -1.3)))

-2.7339 0))

-2.7339 0))

-2.7339 0))

-2.7339 0)))))

)

(setf tkm-calculator (send owner : tkm-calculator))

)

(defmethod (foothold-finder : find-foothold)
(H6 inv-H6 body-trans-ratelO body-rotate-ratelO

estimated-support -plane)
; returns ((max-foothold max-tkm) (foothold-list) (tkm-list)

)

; all points are wpt body coordinate system,
(let* ((estimated-support-plane-wrt-body

(plane-transform estimated-support -plane H6)

)

(four-points (send self
: four-points-on-support-plane
four-lines estimated-support -plane-wrt -body)

)

(possible-footholds (send self
: get-possible-footholds
(send self

: estimate-footholds
four-points estimated-support-plane-wrt -body)

H6 inv-H6))

)

(send self
: get-foothold-with-max-TKM
possible-footholds H6
body-trans-ratelO body-rotate-ratelO)))

"•••a**'

foothold-finder . find-foothold

•I**"

foothold-t .lisp Thu Nov 29 11:29:51 1990

(defmethod (foothold-finder :estimate-f ootholds)
(four-points-wrt-body estimated-support-plane-wrt-body)

; returns estimate-footholds-wrt-body
(do* ((footholds sixteen-footholds (cdr footholds)

)

(out-footholds nil)
(a-foothold nil)

)

((null footholds)
(get-points-on-support-plane out-footholds estimated-support-plane-wrt-body)

)

(setf a-foothold (car footholds)

)

(if (in-side-of-polygon a-foothold
(pick-two-dimensions four-points-wrt-body)

)

(setf out-footholds (cons a-foothold out-footholds)))))

(defmethod (foothold-finder : four-points-on-support -plane)
(four-lines est imated-support -plane-wrt -body)

; returns four points which are intersected by four-lines on
; est imated-support -plane -wrt -body
; math lib: plane-intersection

(do* ((lines four-lines (cdr lines)

)

(points nil)

)

((null lines) points)
(setf points (cons (plane-intersection (car lines)

est imated-support-plane -wrt -body)
points)))

)

(defmethod (foothold-finder :get-foothold-with-max-TKM)
(possible-footholds H

body-trans -rate body-rot ate- rate)
; returns ((max-foothold max-tkm) (foothold-list) (tkm-list)

)

; sets no-cell-available-flag
; real-footholds is really possible footholds

(do ((footholds possible-footholds (cdr footholds)

)

(max-foothold nil) (a-foothold nil) (TKM-list nil) (a-TKM nil)
(real-footholds nil) (max-TKM -100.0))

((null foothold3)
(setf no-cell-available-flag (< max-TKM TKM-margin)

)

(if (>= max-TKM TKM-margin)
(make-output -form
max-foothold max-TKM real-footholds TKM-list H)

nil))
(setf a-foothold (car footholds)

)

(setf a-TKM (send tkm-calculator :find-tkm
a-foothold body-trans-rate body-rotate-rate)

)

(if a-TKM
(progn (setf TKM-list (cons a-TKM TKM-list))

(setf real-footholds (cons a-foothold real-footholds)

)

(if (> a-TKM max-TKM)
(progn (setf max-TKM a-TKM)

(setf max-foothold a-foothold)))))))

(defmethod (foothold-finder :get-possible-footholds)
(estimated-footholds H inv-H)

; returns possible-footholds wrt body
(to-body-transform inv-H

(send self :find-possible-footholds
(to-earth-transform H estimated-footholds)

foothold-t . lisp

))

Thu Nov 29 11:29:51 1990

»***********************•*********************•********"

; foothold-finder .estimate-foothold

» **•*************"

(defun check-polarity (pointl point2 point3)
(let* ((vectl (vectsub point2 pointl))

(vect2 (vectsub point3 pointl))

)

(if (not (third vectl))
(progn (setf vectl (reverse (cons

(setf vect2 (reverse (cons
(crossprod vectl vect2))

)

(reverse vectl))))
(reverse vect2)))))

)

(defun get-points-on-support-plane (points estimated-support-plane-wrt-body)
; returns intersection points with support plane in z-body direction.
; math lib: plane-intersection

(do* ((points points (cdr points)

)

(out-points nil)

)

((null points) out-points)
(setf out-points (cons (plane-intersection

(make-line-to-get -point-on-support-plane
(car points)

)

estimated-support-plane-wrt-body) out -points)))

)

(defun in-side-of-polygon (a-point polygon-points)
; polygon-points must be convext-polygon and in order & two dimensional points,

(do* ((first-points polygon-points (cdr first-points))
(second-points (reverse (cons (car first-points)

(reverse (cdr first-points)))

)

(cdr second-points)

)

(signs nil) (first-point nil) (second-point nil)

)

((null first-points) (same-polarity signs))
(setf first-point (car first-points)

)

(setf second-point (car second-points))

(setf signs (cons (check-polarity first-point second-point a-point)
signs)))

)

(defun make-line-to-get-point-on-support-plane (a-point)
; a-point is two dimensional point.
; returns a-line ((z-direction) (a-point -100)

)

(list '(0 1) (list (first a-point) (second a-point) -100))

)

(defun pick-two-dimensions (points)
(if (listp (first points)

)

(do* ((points points (cdr points)

)

(a-point nil)
(out-points nil)

)

more than one point case

foothold-t .lisp Thu Nov 29 11:29:51 1990 5

((null points) out-points)
(setf a-point (car points)

)

(setf out-points (cons (list (first a-point) (second a-point)

)

out-points))

)

(list (first points) (second points)))) ; one point case

(defun same-polarity (signs)
(do ((signs (cdr signs) (cdr signs)

)

(first-sign (plusp (third (car signs)))

)

(same T)

)

((null signs) same)
(if (not (equal first-sign (plusp (third (car signs))))

)

(setf same nil)))

)

foothold-finder . f ind-foothold.get-foothold-with-MAX-tkm

I**"

(defun make-output-form
(max-foothold max-TKM possible-footholds TKM-list H)

output-form : ((fcothold-with-max-tkm tkm)
(leg-pro jected-permitted-footho Ids)
(leg-pro jected-TKM-list))

output footholds are in earth coordinate,
math lib : to-earth-transform
(list (list (to-earth-transform H max-foothold) max-TKM)

(to-earth-transform H possible-footholds)
TKM-list)

)

I'**"

foothold-finder . select-foothold. get-possible-foothold

•••***************************•*************************'•

(defmethod (foothold-finder : find-possible-footholds)
(estimated-footho Ids -wrt -earth)

; returns possible-footholds-wrt-earth
; graph-terrain is object.

(do* ((footholds estimated-footholds-wrt-earth (cdr footholds)

)

(a-foothold nil) (t-cell nil) (out-footholds nil)

)

((null footholds) (unique-footholds-only out-footholds))
(setf a-foothold (car footholds)

)

(setf t-cell (get-center-of-digitized-terrain-cell a-foothold)

)

(setf out-footholds
(cons (list (+ (first t-cell) 0.5)

foothold-t .lisp Thu Nov 29 11:29:51 1990

(+ (second t-cell) 0.5)
0.0) out-footholds))))

(if (send owner :permitted-cell t-cell)
(setf out-footholds

(cons (send owner : terrain-point t-cell)
out-footholds))))

)

(defun get-center-of-digitized-terrain-cell (a-foothold)
; cell resolution is 1 foot by 1 foot

(list (+ (floor (first a-foothold)) 0.5)
(+ (floor (second a-foothold)) 0.5)))

(defun unique-footholds-only (mixed-footholds)
(do* ((footholds mixed-footholds (cdr footholds))

(out-footholds nil)
(a-foothold nil)

)

((null footholds) • out-footholds)
(setf a-foothold (car footholds)

)

(if (not (member a-foothold out-footholds :test 'equal))
(setf out-footholds (cons a-foothold out-footholds))))

)

graph-tl.lisp Wed Nov 28 10:10:16 1990 1

;;; _*_ Mode : Common-Lisp; Package :USER; Base: 10 -*-

.***•****************

; low level graph routines

(defvar *robot-display-window* nil)
(defvar *robot-display-window-array* nil)
(defvar *robot-window* nil)
(defvar *robot-window-array* nil)
(defvar *robot-window-width* nil)
(defvar *robot-window-height* nil)
(defvar *terrain-buf fer* nil)
(defvar *terrain-buf fer-array* nil)
(defvar *max-y* nil)
(defvar *start-point* nil)
;TI
(defvar *xs* (make-array 2))
(defvar *ys* (make-array 2))

(defun copy-terrain-to-robot-window ()

(tv: sheet -force-access (* robot -window*)
(send *robot-window* :bitblt
tv:alu-ior *robot-window-width* *robot-window-height*
terrain-buf fer-array 2 2 0)))

(defun draw-to (a-point a-window)
; global variables : *start -point*

(tv: sheet-force-access (a-window)
(send a-window ' :draw-line (first *start-point*)

(- *max-y* (second *start-point*)

)

(first a-point)
(- *max-y* (second a-point)) tv:alu-ior))

(setq *start -point* a-point)

)

(defun draw-to-d (a-point a-window)
; global variables : *start -point*

(tv: sheet-force-access (a-window)
(setf (aref *xs* 0) (+ 4 (first *start -point*))

)

(setf (aref *xs* 1) (+ 4 (first a-point)))
(setf (aref *ys* 0) (+ 4 (- *max-y* (second *start -point*)))

)

(setf (aref *ys* 1) (+ 4 (- *max-y* (second a-point)))

)

(send a-window : draw-wide-curve *xs* *ys* 2)

)

(setq *start -point* a-point)

)

i

(defun erase-to (a-point a-window)
; global variables : *start-point*

(tv: sheet -force-access (a-window)
(send a-window ' :draw-line (first *start -point*)

(- *max-y* (second *start-point*)

)

(first a-point)
(- *max-y* (second a-point)) tv:alu-andca)

)

(setq *start -point* a-point)

)

graph-tl.lisp Wed Nov 28 10:10:16 1990

(defun get-keyboard-input (

)

; This is not for the graphics, but this function uses Zeta LISP.
; This is the reason why this function is in Zeta graphic package.

(send *terminal-io* : tyi-no-hang)

)

(defun make-robot-window ()

(setq *robot-display-window* (tv:make-window
' tv: window
:blinker-p nil
:position ' (0 0)

:width *screen-width*
•.height (truncate (* 0.8 *screen-height*))

:borders 2

: label "robot-display-window"
:name "robot-display-window"
:save-bits t

:expose-p t)

)

(let* ((r-w (send *robot-display-window* :width)

)

(r-h (send *robot-display-window* :height)

)

(r-x nil) (r-y nil)

)

(multiple-value (r-x r-y) (send *robot-display-window* :position)

)

(setq *robot-window* (tv:make-window '

tv: window
:position (list r-x r-y)
: width r-w
: height r-h
:blinker-p nil
:borders 2

: label "robot-window"
:name "robot-window"
:save-bits t

:expose-p nil)

)

(setq *terrain-buf fer* (tv:make-window
' tv: window
:position (list r-x r-y)
: width r-w
:height r-h
:blinker-p nil
: borders 2

: label "terrain-buffer"
:name "terrain-buffer"
:save-bits t

:expose-p nil)

)

(setq *max-y* (send *robot-window* : inside-height))

)

(setq *robot-display-window-array* (send *robot-display-window* :bit-array)
(setq *robot-window-array* (send *robot-window* :bit-array)

)

(setq *robot-window-width* (send *robot-window* : inside-width)

)

(setq * robot -window-height* (send *robot-window* : inside-height)

)

(setq *terrain-buffer-array* (send *terrain-buf fer* :bit-array))

)

(defun make-visible ()

(send *robot-display-window* :bitblt
tv:alu-seta *robot-window-width* *robot-window-height*
robot-window-array 2 2 0))

graph-tl.lisp Wed Nov 28 10:10:16 1990

(defun move-to (a-point)
; global variables : *start-point*
; This function just changes *start-point*

.

(setq *start-point* a-point)

)

(defun save-terrain-to-terrain-buf fer ()

(tv: sheet -force-access (*terrain-buffer*)
(send *terrain-buf fer* :bitblt
tv:alu-seta *robot-window-width* *robot-window-height*
robot-window-array 2 2 0))

)

(defun clear-robot-window ()

(tv: sheet -force-access (* robot -window*)
(send *robot-window* : clear-window))

)

(defun middle-of-robot-window ()

(list (/ (send *robot-window* : inside-width) 2)

(/ (send *robot-window* : inside-height) 2)))

(defun kill-robot-terrain-windows ()

(send *robot-display-window* :kill)
(send *robot-window* :kill)
(send *terrain-buffer* :kill))

h-calculator-t.lisp Thu Nov 29 11:30:22 1990 1

; ; -*- Mode : Common-Lisp; Base: 10 -*-

H-calculator definition

(defflavor H-calculator ((sampling-time 0.1) H

old-H)

: initable-instance -variables)

(defmethod (H-calculator :initti)

; library fucntion : ident
(setf H (ident)

)

(setf (aref H 3) 6.5)
(setf (aref H 1 3) 19.5)
(setf (aref H 2 3) 5.4)
H)

(defmethod (H-calculator :new-H)
(body-trans-rate body- rotate -rate)

(setf H
(orthogonalization

(get-new-H
H

(get-del-H
H
(get-delta body-trans-rate body-rotate-rate sampling-time)))))

)

(defmethod (H-calculator :save)

()

(setf old-H H)

)

(defmethod (H-calculator : restore)

(setf H old-H)

)

."**!

H-calculator .new-H

;"**n

(

(defun get-delta (body-trans-rate body-rotate-rate sampling-time)
(let* ((del-trans-x (* (first body-trans-rate) sampling-time)

)

(del-trans-y (* (second body-trans-rate) sampling-time)

)

(del-trans-z (* (third body-trans-rate) sampling-time))
(del-rotate-x (* (first body-rotate-rate) sampling-time)

)

(del-rotate-y (* (second body-rotate-rate) sampling-time)

)

h-calculator-t . lisp Thu Nov 29 11:30:22 1990

(del-rotate-z (* (third body-rotate-rate) sampling-time)))
(list (list del-trans-x del-trans-y del-trans-z)

(list del-rotate-x del-rotate-y del-rotate-z)))

)

(defun get-del-H (H delt
; math lib : ident

(let* ((H-del (ident)

)

(delta--trans (

(delta--rotate (

(setf aref H-del
(setf aref H-del 1

(setf aref H-del 2

(setf aref H-del
(setf aref H-del 1

(setf aref H-del 2

(setf aref H-del
(setf aref H-del 1

(setf aref H-del 2

(setf aref H-del
(setf aref H-del 1

(setf aref H-del 2

(setf aref H-del 3

(matri>mult H H-del)

a-trans-rotate)

; initialze identity matirix
first delta-trans-rotate)

)

second delta-trans-rotate)))

0) 0)

(third delta-rotate)

)

(- (second delta-rotate))

)

(- (third delta-rotate))

)

0)

(first delta-rotate)

)

(second delta-rotate)

)

(- (first delta-rotate)))
0)

(first delta-trans)

)

(second delta-trans))

(third delta-trans))

0)

0)

1)

1)

1)

2)

2)

2)

3)

3)

3)

3) 0)

))

(defun get-new-H (H del-H)
(matrixadd H del-H)

)

leg-t.lisp Wed Nov 28 10:11:09 1990

... _*_ Mode : Common-Lisp; Base: 10 -*-

.**

leg flavor definition

.•A**

(defflavor leg (name owner plan-machine control-machine
executor contact-sensor tkm-calculator
foothold-finder exchanged-leg
foothold tkm foothold-list tkm-list tkm-p
reserved-foothold reserved-tkm)

: initable-instance-variables
: gettable-instance-variables)

(defmethod (leg :initti)
(H)

(setf contact-sensor (make-instance 'contact-sensor :owner self))
(setf executor (make-instance 'executor :owner self))
(setf control-machine (make-instance 'control-state-machine rowner self))
(setf plan-machine (make-instance 'plan-state-machine :owner self))
(setf tkm-calculator (make-instance 'tkm-calculator :owner self))
(setf foothold-finder (make-instance 'foothold-finder : owner self))
(setf foothold (send executor :initti name H)

)

(send contact-sensor :initti name)
(send control-machine :initti name)
(send plan-machine :initti name)
(send tkm-calculator :initti name)
(send foothold-finder rinitti name))

(defmethod (leg : contact-confirm)
()

(send contact-sensor :contact-p)

)

(defmethod (leg : do-planned-motion)

(send plan-machine : change)
(send control-machine : change)
(send executor :move (send owner :get-Hl) (send owner :get-inv-Hl)

(send owner :get-body-trans-ratel)
(send owner :get-body-rotate-ratel)

)

(send contact-sensor : sensing))

(defmethod (leg :get-Hl)

(send owner :get-Hl))

(defmethod (leg :has-foothold-p)

foothold)

leg-t.lisp Wed Nov 28 10:11:09 1990

(defrnethod (leg : interlock-conf irrn)

; may add stable-without-p self
(if (send exchanged-leg :contact-conf irm)

t

nil))

(defrnethod (leg : leg-pos-wrt-body)

(send executor : leg-pos-wrt-body)

)

(defrnethod (leg : lift-able)

(if (equal (send plan-machine : state-name) ' eligible-to-lif t)

self
nil))

(defrnethod (leg :lift-ok)

(send owner :lift-ok name))

(defrnethod (leg : lifted)

(send owner : lifted name))

(defrnethod (leg : new-foothold)

(cond ((car foothold-list)
(send self :set-max)
t)

(t

nil)))

(defrnethod (leg :permitted-cell)
(t-cell)

(send owner :permitted-cell t-cell)

)

(defrnethod (leg : place-able)

; check plan state as well, as foothold for the leg
(if (equal (send plan-machine : state-name) 'available-leg)

self '

nil))

(defrnethod (leg :pro jected-pos)

leg-t.lisp Wed Nov 28 10:11:09 1990

(send executor : get-desired-pos)

)

(defmethod (leg : select-foothold)

; out-list: ((max-foothold max-tkm) (foothold-list) (tkm-list))
(let* ((H (send owner :get-H6))

(inv-H (send owner :get-inv-H6)

)

(body-trans-rate (send owner :get-body-trans-ratelO)

)

(body-rotate-rate (send owner :get-body-rotate-ratelO)

)

(estimated- support -plane
(send owner :get-estimated-support-plane)

)

(out-list
(send foothold-finder : find-foothold

H inv-H body-trans-rate body-rotate-rate
estimated-support-plane))

)

(setf foothold (first (first out-list))

)

(setf reserved-foothold foothold)
(setf tkm (second (first out-list)))

(setf reserved-tkm tkm)
(setf foothold-list (second out-list)

)

(setf tkm-list (third out-list))))

(defmethod (leg :send-decision)
(a-decision)

(send plan-machine : send-decision a-decision)
;)

/(defmethod (leg : send-decision :after)
; (a-decision)

(if (equal a-decision 'place)
(send executor :set-desired-pos foothold)))

(defmethod (leg :send-exchange)
(a-leg)

(setf exchanged-leg a-leg)

)

(defmethod (leg : set-max)
()

(do ((footholds (cdr foothold-list) (cdr footholds)

)

(tkms (cdr tkm-list) (cdr tkms)

)

(max-foothold (car foothold-list)

)

(max-tkm (car tkm-list) ;

(out-footholds) (out-tkms)

)

((null footholds)
(setf foothold max-foothold)
(setf tkm max-tkm) ,

(setf foothold-list out-footholds)
(setf " tkm-list out-tkms))

(cond ((> (car tkms) max-tkm)
(setf max-foothold (car footholds)

)

(setf max-tkm (car tkms)))
(t

(setf out-footholds
(cons (car footholds) out-footholds)

)

leg-t.lisp Wed Nov 28 10:11:09 1990

(setf out-tkms
(cons (car tkms) out-tkms))))))

(defmethod (leg : stable-without-p)

(send owner : stable-without-p self))

(defmethod (leg : supporting)

(cond ((equal (send plan-machine :state-name) 'planned-contact)
self)
((equal (send plan-machine :state-name) ' eligible-to-lift)
self)
(t nil)

)

)

(defmethod (leg : support ing-p)

(cond ((equal (send control-machine :state-name) 'contact)
self)
((equal (send control-machine :state-name) 'support)
self)
(t nil))

)

(defmethod (leg : terrain-point

)

(t-cell)
(send owner : terrain-point t-cell)

(defmethod (leg :TKM-limit)

(cond ((null tkm)
self)

((< tkm 0.1)
self)
(t

nil)))

(defmethod (leg :TKM-limit-p)

(cond ((null tkm-p)
self)

,

((< tkm-p 0.5)
self)
(t nil))

)

(defmethod (leg :update-tkm)

leg-t.lisp Wed Nov 28 10:11:09 1990 5

(let ((body-trans-rate (send owner :get-body-trans-ratelO)

)

(body-rotate-rate (send owner :get-body-rotate-ratelO)

)

(inv-H (send owner :get-inv-H10))

)

(setf tkm (send tkm-calculator :find-tkm
(to-body-transform inv-H foothold)
body-trans-rate body-rotate-rate))

)

)

(defmethod (leg :update-tkm-p)

(let ((body-trans-rate-p (send owner :get-body-trans-ratel)

)

(body-rotate-rate-p (send owner :get-body-rotate-ratel)

)

(inv-H-p (send owner :get-inv-Hl))

)

(setf tkm-p (send tkm-calculator :find-tkm
(to-body-transform inv-H-p foothold)
body-trans-rate-p body-rotate-rate-p))

)

)

(defmethod (leg : with-foothold)

(cond (reserved-foothold
(setf foothold reserved-foothold)
(setf tkm reserved-tkm)
self)
(t nil)))

math-t.lisp Thu Nov 29 11:32:16 1990 3

;;; -*- Mode : Common-Lisp; Package :USER; Base: 10 -*-

robot math library

(defun arc-cos (s)

(acos s)

)

(defun col-mul (mat coll col2)
(let ((sum 0))

(dotimes (i 4)

(setf sum (+ sum (* (aref mat i coll) (aref mat i col2)))

)

sum))

(defun counting (a-list)
(do ((a-list a-list (cdr a-list)

)

(i (+ i 1)))
((null a-list) i)))

(defun crossprod (vectl vect2)
(let* ((xl (first vectl)) (x2 (first vect2)

)

(yl (second vectl)) (y2 (second vect2))
(zl (third vectl)) (z2 (third vect2)

)

(x (- (* yl z2) (* y2 zl)))

(y (- (* x2 zl) (* xl z2)))

(z (- (* xl y2) (* x2 yl))))

(list x y z))

)

(defun delete-list (a-list b-list) ; delete a-list from b-list
(do ((deleting-li3t a-list (cdr deleting-list)

)

(deleted-list b-list)

)

((null deleting-list) deleted-list)
(setf deleted-list (remove (car deleting-list)

deleted-list :test 'equal))))

(defmacro dequeue (queue)
* (progl (car , queue)

(setf , queue (cdr ,queue))))

(defun dotprod (vectl vect2)
; No dimension limitation ! !

!

(apply '+ (mapcar '* vectl vect2))

)

(defmacro enqueue (queue-name element)
; globals : queue-name

math-t.lisp Thu Nov 29 11:32:16 1990 2

; Value of recover field of command is a list.
; Two recover command is possible for one sampling-time.
; structure of QUEUE : (first second third . . . last)

' (setq ,
queue-name (nconc , queue-name (list , element)))

(defmacro empty-queue (queue)
' (setq , queue '

())

)

(defun ident ()

(make-array '(4 4) : initial-contents
'

((1 0)

(0 10 0)

(0 10)
(0 1))))

(defun magnitude (a-vector)
(sqrt (dotprod a-vector a-vector)

(defun magvect (const vect)
; magvect = const * vect

(mapcar #' (lambda (a-element)
(* const a-element))

vect)

)

(defun matrixadd (mtl mt2)
(let ((mt3 (ident)))

(dotimes (i 4)

(dotimes (j 4)

(setf (aref nit 3 i j) (+ (aref mtl i j) (aref mt2 i j)))))
mt3))

(defun matrixinv (mat)
(let ((px (- (col-mul mat 3)))

(py (- (col-mul mat 13)))
(pz (- (col-mul mat 2 3)))
(matrix (transpose mat)))

(setf (aref matrix 3 0) 0) (setf (aref matrix 3 1) 0)

(setf (aref matrix 3 2) 0) (setf (aref matrix 3 3) 1)

(setf (aref matrix 3) px) (setf (aref matrix 1 3) py)
(setf (aref matrix 2 3) pz)
matrix)

)

(defun matrixniult (mtl mt2)
(let ((mat (make-array '(4 4)))) ;it defines through 3. (4 is not included)

(dotimes (i 4) ; will repeat i=0, 1, 2, and 3. (not 4)

(dotimes (j 4)

(setf (aref mat i j) 0) ; initialize to zero
(dotimes (k 4)

(setf (aref mat i j) (+ (aref mat i j) (* (aref mtl i k)

math-t . lisp Thu Nov 29 11:32:16 1990

(aref mt2 k j)))))))

mat))

(defun nil-list (a-list)
(do ((a-list a-list (cdr a-list)

)

(not-nil nil)

)

((null a-list) (not not-nil))
(if (car a-list)

(setf not-nil t)))

)

(defun normalize-vector (a-vector)
(let ((m (magnitude a-vector))

)

(if (< m 0.0000001)
(list 0)

(magvect (/ 1.0 m) a-vector))))

(defun orthogonalization (mt)

; Gram-Schimit orthogonalization process
(let* ((mx

(tx

(xl

(yi
(zl

(ml
(xl

(yi
(zl
(a

(x2

<y2
(z2

(m2

<x2

<y2
(z2

ident)

)

aref mt 3)) (ty (aref mt 1 3)) (tz (aref mt 2 3)

)

aref mt 0)) (x2 (aref mt 1)) (x3 (aref mt
aref mt 1 0)) (y2 (aref mt 1 1)) (y3 (aref mt
aref mt 2 0)) (z2 (aref mt 2 1)) (z3 (aref mt
magnitude (list xl yl zl))

)

/ xl ml)

)

/ yl ml))
/ zl ml)

)

dotprod (list xl yl zl) (list x2 y2 z2))

)

- x2 (* a xl)))

- y2 (* a yl)))
- z2 (* a zl)))

magnitude (list x2 y2 z2)))
/ x2 m2)

)

/ y2 m2))
/ z2 m2)))

2))

2))
2))

(setf
(setf
(setf
(setf
mx))

(aref mx 0) xl) (setf (aref mx 1) x2) (setf (aref mx 2) x3)

(aref mx 1 0) yl) (setf (aref mx 1 1) y2) (setf (aref mx 1 2) y3)
(aref mx 2 0) zl) (setf (aref mx 2 1) z2) (setf (aref mx 2 2) z3)

(aref mx 3) tx) (setf (aref mx 1 3) ty) (setf (aref mx 2 3) tz)

(defun plane-transform (plane matrix)

; Transformed-Plane = Plane * Matrix
plane
(let*

((a b c) d) . (a b c) is unit normal, d is -(distance)is defined as

((new-a nil)
(new-b nil)
(new-c nil) ,

(new-d nil)
(old-unit-normal (car plane)

)

(old-d (cadr plane)

)

(old-a (first old-unit-normal)

)

(old-b (second old-unit-normal)

)

(old-c (third old-unit-normal)

)

(mag nil)

)

(setf new-a (+ (* old-a (aref matrix 0)) (* old-b (aref matrix 1 0))

math-t.lisp Thu Nov 29 11:32:16 1990

(* old-c (aref matrix 2 0)))
(setf new-b (+ (* old-a (aref matrix 1)

)

(* old-c (aref matrix 2 1)))
(setf new-c (+ (* old-a (aref matrix 2))

(* old-c (aref matrix 2 2)))
(setf new-d (+ (* old-a (aref matrix 3)

)

(* old-c (aref matrix 2 3)) old-d)

)

(setf mag (magnitude (list new-a new-b new-c))

)

(if (< (abs mag) 0.0000001)
(print "Error in PlaneTransform")
(list (list (/ new-a mag) (/ new-b mag) (/ new-c mag))

(/ new-d mag))))

)

old-b (aref matrix 1 1)

)

old-b (aref matrix 1 2))

old-b (aref matrix 1 3)

)

(defun plane-distance (plane velocity position)
; Plane (X - Q)N = , straight line X = P + tA.
;t= (Q-P)N/ (AN) if A is normalized then t is signed distance
; if t is infinitive then plane-distance returnes nil.
; plane-distance returns t.

(let* ((A (normalize-vector velocity)

)

(N (first plane)

)

(dis (- (second plane))

)

(Q (magvect dis N)) ; magvect = const * vector
(P position)
(Q_P (vectsub Q P)

)

(AN (dotprod A N)

)

(numerator (dotprod Q_P N))

)

(if (< (abs AN) 0.0000001) ; no crossing
nil ; returns nil
(/ numerator AN))))

(defun plane-intersection (a-line a-plane)
; a-line ((direction) (point)) X = P + tA.
; a-plane ((unit -normal) -dist) (X - Q)N = 0.

(let* ((velocity (normalize-vector (first a-line))

)

(position (second a-line)

)

(t-value (plane-distance a-plane velocity position))

)

(if t-value
(vectadd position (magvect t-value velocity)

)

nil))) ; no intersection

(defun plane-normal-distance (a-plane a-point)
; vector-type-plane (abed)
; paul-type-point transpose (x y z 1)

(let* ((unit-normal (first a-plane))
(dis (second a-plane)

)

(vector-type-plane (reverse (cons dis (reverse unit-normal)))

)

(paul-type-point (reverse (cons 1 (reverse a-point)))))
(dotprod" vector-type-plane paul-type-point))

)

(defun rotatemat (axis angle) ; array index starts from not 1.

; return rotatematrix angle : radian axis : x y or z

(let ((mat (ident)

)

math-t . lisp Thu Nov 29 11:32:16 1990

(cosa (cos angle)

)

(sina (sin angle))

)

(case axis
(x-axis

(setf (aref mat 1 1) cosa)
(setf (aref mat 2 1) sina)

(y-axis
(setf (aref mat 0) cosa)
(setf (aref mat 2 0) (- sina)

)

(z-axis

(setf (aref mat 1 2) (- sina)

)

(setf (aref mat 2 2) cosa))

(setf (aref mat 2) sina)
(setf (aref mat 2 2) cosa))

(setf (aref mat 0) cosa) (setf (aref mat 1) (- sina))
(setf (aref mat 1 0) sina) (setf (aref mat 1 1) cosa)))

mat)) ; returns this value.

(defun to-body-transform (inv-H points-wrt-earth)
; returns points-wrt-body

(if (listp (first points-wrt-earth)

)

; test multi-points
(do ((points points-wrt-earth (cdr points)) ; multi-points case

(out-points nil)

)

((null points) (reverse out-points)

)

(setf out-points (cons (transform inv-H (car points)) out-points))

)

(transform inv-H points-wrt-earth))) ; single point case

(defun to-earth-transform (H points-wrt-body)
; returns points-wrt-earth

(if (listp (first points-wrt-body)

)

; test multi-points
(do ((points points-wrt-body (cdr points)) ; multi-points case

(out -points nil)

)

((null points) (reverse out-points)

)

(setf out-points (cons (transform H (car points)) out-points))

)

(transform H points-wrt-body))

)

; single point case

(defun transform(mat point) ; array index starts from not 1.

(let ((x (car point)

)

(y (cadr point)

)

(z (if (caddr point) (caddr point) 0)))
(list (+ (* x (aref mat 0)) (* y (aref mat 1)) (* z (aref mat 2))

(aref mat 3)

)

(+ (* x (aref mat 10)) (* y (aref mat 11)) (* z (aref mat 1 2))
(aref mat 1 3)

)

(+ (* x (aref mat 2 0)) (* y (aref mat 2 1)) (* z (aref mat 2 2))
(aref mat 2 3))))

)

(defun transmat (x y z)

; returns translational marix
(let ((matrix (ident)))

(setf (aref matrix 3,) x)

(setf (aref matrix 1 3) y)
(setf (aref matrix 2 3) z)

matrix)

)

(defun transpose (mat)
(let ((matrix (make-array ' (4 4)

math-t.lisp Thu Nov 29 11:32:16 1990

(dotimes (i 4)

(dotimes (j 4)

(setf (aref matrix i j) (aref mat j i)))

)

matrix)

)

(defun unit-crossprod (vectl vect2)
; generate unitnormal vector of vectl X vect2

(let* ((xl (first vectl)) (x2 (first vect2))
(yl (second vectl)) (y2 (second vect2))
(zl (third vectl)) (z2 (third vect2)

)

(x (- (* yl z2) (* y2 zl))

)

(y (- (* x2 zl) (* xl z2)))
(z (- (* xl y2) (* x2 yl)))
(m (sqrt (+ (* x x) (* y y) (* z z)))))

(list (/ x m) (/ y m) (/ z m))))

(defun vectadd (vectl vect2)
; vectsub = vectl + vect2
; no limit in dimension

(mapcar '+ vectl vect2)

)

(defun vectsub (vectl vect2)
; vectsub = vectl - vect2
; no limit in dimension

(mapcar '- vectl vect2))

overlap-foothold-t .lisp Thu Nov 29 11:32:41 1990 1

; ; -*- Mode : Common-Lisp; Base: 10 -*-

overlap- footho Id- finder definition

(def flavor overlap-foothold-finder (adjacent-leg-numbers)
(footho Id- finder)

: initable-instance -variables)

(defmethod (overlap-foothold-finder :initti)
(leg-name)

(cond ((equal leg-name 'legl)
(setf adjacent-leg-numbers ' (3)

)

(setf sixteen-footholds
'((9.0 4.3) (9.0 3.3) (9.0 2.3) (9.0 1.3)

(8.0 4.3) (8.0 3.3) (8.0 2.3) (8.0 1.3)
(7.0 4.3) (7.0 3.3) (7.0 2.3) (7.0 1.3)
(6.0 4.3) (6.0 3.3) (6.0 2.3) (6.0 1.3)
(5.0 4.3) (5.0 3.3) (5.0 2.3) (5.0 1.3)
(4.0 4.3) (4.0 3.3) (4.0 2.3) (4.0 1.3)
(3.0 4.3) (3.0 3.3) (3.0 2.3) (3.0 1.3)))

(setf four-lines
'(((0 0.3420 -0.9397) (9.5 2.7339 0))

((0 -0.3420 -0.9397) (9.5 2.7339 0))

((0 -0.3420 -0.9397) (2.5 2.7339 0))

((0 0.3420 -0.9397) (2.5 2.7339 0)))))
((equal leg-name 'leg2)
(setf adjacent-leg-numbers ' (4))

(setf sixteen-footholds
'((9.0 -4.3) (9.0 -3.3) (9.0 -2.3) (9.0 -1.3)

(8.0 -4.3) (8.0 -3.3) (8.0 -2.3) (8.0 -1.3)
(7.0 -4.3) (7.0 -3.3) (7.0 -2.3) (7.0 -1.3)
(6.0 -4.3) (6.0 -3.3) (6.0 -2.3) (6.0 -1.3)
(5.0 -4.3) (5.0 -3.3) (5.0 -2.3) (5.0 -1.3)
(4.0 -4.3) (4.0 -3.3) (4.0 -2.3) (4.0 -1.3)
(3.0 -4.3) (3.0 -3.3) (3.0 -2.3) (3.0 -1.3)))

(setf four-lines
'(((0 0.3420 -0.9397) (9.5 -2.7339 0))

((0 -0.3420 -0.9397) (9.5 -2.7339 0))
((0 -0.3420 -0.9397) (2.5 -2.7339 0))
((0 0.3420 -0.9397) (2.5 -2.7339 0)))))

((equal leg-name 'leg3)
(setf adjacent-leg-numbers ' (1 5))
(setf sixteen-footholds

'((3.0 4.3) (3.0 3.3) (3.0 2.3) (3.0 1.3)
(2.0 4.3) (2.0 3.3) (2.0 2.3) (2.0 1.3)
(1.0 4.3) (1.0 3.3) (1.0 2.3) (1.0 1.3)
(0.0 4.3) (0.0 3.3) (0.0 2.3) (0.0 1.3)
(-1.0 4.3) (-1.0 3.3) (-1.0 2.3) (-1.0 1.3)
(-2.0 4.3) (-2.0 3.3) (-2.0 2.3) (-2.0 1.3)
(-3.0 4.3) (-3.0 3.3) (-3.0 2.3) (-3.0 1.3)))

(setf four-lines
,

'(((0 0.3420 -0.9397) (3.5 2.7339 0))
((0 -0.3420 -0.9397) (3.5 2.7339 0))

((0 -0.3420 -0.9397) (-3.5 2.7339 0))

((0 0.3420 -0.9397) (-3.5 2.7339 0)))))
((equal leg-name 'leg4)
(setf adjacent -leg-numbers ' (2 6))

(setf sixteen-footholds
'((3.0 -4.3) (3.0 -3.3) (3.0 -2.3) (3.0 -1.3)

overlap-foothold-t . lisp Thu Nov 29 11:32:41 1990

(2

(1

(

(-1

(-2

(-3

-4.3)
-4.3)
-4.3)
-4.3)
-4.3)
-4.3)

(2

(1

(0.0
(-1
(-2

(-3

-3.3)
-3.3)
-3.3)
-3.3)
-3.3)
-3.3)

(2

(1

(

(-1

(-2

(-3

-2.3)
-2.3)
-2.3)
-2.3)
-2.3)
-2.3)

{ 2.0
(1.0
(0.0
(-1.0
(-2.0
(-3.0

(setf four-lines
'

(((0 0.3420 -0.939
((0 -0.3420 -0.939
((0 -0.3420 -0.939
((0 0.3420 -0.939

((equal leg-name 'leg5)
(setf adjacent-leg-numbers
(setf sixteen-footholds

7)

7)

7)

7)

(3.5 -2

(3.5 -2

(-3.5 -2

(-3.5 -2

7339 0)

)

7339 0)

)

7339 0)

)

7339 0))))

)

((-3
(-4

(-5

(-6
(-7

(-8

(-9

3)

3)

3)

3)

3)

3)

3)

(-3
(-4

(-5

(-6,

(-7

(-8
(-9

(setf four-lines
'

(((0 0.3420 -0.939
((0 -0.3420 -0.939
((0 -0.3420 -0.939
((0 0.3420 -0.939

((equal leg-name 'leg6)
(setf adjacent-leg-numbers
(setf sixteen-footholds

'
((-3.0 -4.3) (-3.0
(-4.0 -4.3) (-4.0
(-5.0 -4.3) (-5.0
(-6.0 -4.3) (-6.0
(-7.0 -4.3) (-7.0
(-8.0 -4.3) (-8.0
(-9.0 -4.3) (-9.0

(setf four-lines
'

(((0 0.3420 -0.939
((0 -0.3420 -0.939
((0 -0.3420 -0.939
((0 0.3420 -0.939

(3))

.3)

.3)

.3)

.3)

.3)

.3)

.3)

(-3
(-4

(-5

(-6

(-7

(-8

(-9

3)

3)

3)

3)

3)

3)

3)

(-3
(-4

(-5

(-6

(-7

(-8

(-9

(-2.5 2

(-2.5 2

(-9.5 2

(-9.5 2

-3
-3
-3
-3
-3
-3
-3

7)

7)

7)

7)

(4)

3)

3)

3)

3)

3)

3)

3)

(-3.0
(-4.0
(-5.0
(-6.0
(-7.0
(-8.0
(-9.0

(-2.5 -2

(-2.5 -2

(-9.5 -2

(-9.5 -2

7339 0))
7339 0))
7339 0))
7339 0)))))

-1.3)
-1.3)
-1.3)
-1.3)
-1.3)
-1.3)))

3)

3)

3)

3)

3)

3)

3)))

7339 0)

)

7339 0)

)

7339 0)

)

7339 0))))

)

-2.3) (-3.0 -1.3)
-2.3) (-4.0 -1.3)
-2.3) (-5.0 -1.3)
-2.3) (-6.0 -1.3)
-2.3) (-7.0 -1.3)
-2.3) (-8.0 -1.3)
-2.3) (-9.0 -1.3)))

)

(setf tkm-calculator (send owner : tkm-calculator)

)

)

(defmethod (overlap-foothold-finder :get-possible-footholds)
(estimated-foothold3 H inv-H)

; returns possible-footholds wrt body
; find-possible-footholds function tests obstacles

(to-body-transform
inv-H

,

(send self :get-rid-of-overlap
(send self : find-possible-footholds

(to-earth-transform H estimated-footholds)))

)

(defmethod (overlap-foothold-finder :get-rid-of-overlap)
(footho Ids -wrt -earth)

overlap-foothold-t .lisp Thu Nov 29 11:32:41 1990 3

(let* ((a jacent-legs
(mapcar

#' (lambda (leg-num)
(send owner : nth-leg leg-num))

adjacent-leg-numbers)

)

(adjacent-legs -in-possible -interact ion
(remove
nil
(mapcar #' (lambda (leg)

(if (send leg :place-able) ;no interaction
nil
leg))

a jacent-legs)))

)

(send self : remove-overlapped-foothold
footholds -wrt -earth
adjacent-legs-in-possible-interaction))

)

(defmethod (overlap-foothold-finder : remove-overlapped-foothold
(footholds -wrt -earth legs -in-possible- interact ion)

(do ((legs legs-in-possible-interaction (cdr legs)

)

(out -footho Ids footho Ids -wrt -earth)
(overlap-foothold)

)

((null legs) out-footholds)
(setf overlap-foothold (send (car legs) : foothold))
(setf out-footholds

(remove overlap-foothold
out -foot ho Ids
:test #' (lambda (xl x2)

(send self :overlap-p xl x2)

)

))))

(defmethod (overlap-foothold-finder :overlap-p)
(xl x2)

(let ((xl-integer (mapcar #' truncate xl)

)

(x2-integer (mapcar #'truncate x2))

)

(equal xl-integer x2-integer))

)

overlap-leg-t . lisp Thu Nov 29 11:32:57 1990

; ;
-*- Mode : Common-Lisp; Base: 10 -*-

overlap-leg definition

(defflavor overlap-leg ()

(leg)

)

(defmethod (overlap-leg rinitti)
(H)

(setf contact-sensor (make-instance 'contact-sensor :owner self))
(setf executor (make-instance 'executor :owner self))
(setf control-machine (make-instance 'control-state-machine : owner self))
(setf plan-machine (make-instance 'plan-state-machine rowner self))
(setf tkm-calculator (make-instance ' overlap-tkm-calculator :owner self))
(setf foothold-finder (make-instance 'overlap-foothold-finder : owner self))
(setf foothold (send executor :initti name H)

)

(send contact-sensor :initti name)
(send control-machine :initti name)
(send plan-machine rinitti name)
(send tkm-calculator rinitti name)
(send foothold-finder rinitti name))

(defmethod (overlap-leg :nth-leg)
(leg-num)

(send owner : nth-leg leg-num)

)

(defmethod (overlap-leg : foothold)

foothold)

overlap-robot-t . lisp Thu Nov 29 11:33:11 1990

.. _*_ Mode : Common-Lisp; Base: 10 -*-

overlap-robot definition

(def flavor overlap-robot (

)

(robot)
:init able- instance-variables
: gettable-instance-variables)

:owner self)

)

(defmethod (overlap-robot :initti)

(send graph-asv :init-data)
(setf vision-system (make-instance 'vision-system
(send vision-system rinitti)
(setf joystick (make-instance 'joystick))
(send joystick :reset)
(empty-queue lift-queue)
(setf lift-flag t)

(let ((H))
(setf body (make-instance 'body :owner self))
(setf H (send body :initti))
(setf legs (list

(make-instance 'overlap-leg
(make-instance 'overlap-leg
(make-instance 'overlap-leg
(make-instance 'overlap-leg
(make-instance 'overlap-leg
(make-instance 'overlap-leg
))

(mapcar #' (lambda (a-leg) (send a-leg :initti H)) legs))

name 'legl : owner self)
name 'leg2 : owner self)
name 'leg3 : owner self)
name 'leg4 : owner self)
name 'leg5 : owner self)
name 'leg6 : owner self)

(defmethod (overlap-robot :nth-leg)
(leg-num)

; nth starts counting from zero.
; leg-num starts from one.

(nth (- leg-num 1) legs)

)

overlap-tkm-t . lisp Thu Nov 29 11:33:28 1990

;; -*- Mode : Common-Lisp; Base: 10 -*-

overlap-tkm-calculator definition

(def flavor overlap-tkm-calculator ()

(tkm-calculator)
: init able-instance -variables)

(defmethod (overlap-tkm-ca
(leg-name)

(cond ((equal leg-name '

(setf working-vol
'

((((0 1)

(((0 1)

((equal leg-name '

(setf working-vol
'

((((0 1)

(((0 1)

((equal leg-name '

(setf working-vol
' ((((0 1)

(((0 1)

((equal leg-name '

(setf working-vol
' ((((0 1)

(((0 1)

((equal leg-name '

(setf working-vol
' ((((0 1)

(((0 1)

((equal leg-name '

(setf working-vol
' ((((0 1)

(((0 1)

)

)

lculator :initti)

legl)
ume
3.316) (d 0) -9 5) (0 9397 ^420) -2 569)
5.7313) ((1 0) -2 5) (0 9397 -0 ^420) -2 569)

leg2)
ume
3.316) ((1 0) -9 5) (0 9397 3420) 2 .569)
5.7313) ((1 0) -2 5) (0 9397 -0 3420) 2 .569)

leg3)
ume
3.316) ((1 0) -3 5) (0 9397 .3420) -2 .569)
5.7313) ((1 0) 3 .5) (0 9397 -0 .3420) -2 .569)

leg4)
ume
3.316) (d 0) -3 5) (0 9397 .3420) 2 .569)
5.7313) ((1 0) 3 5) (0 9397 -0 .3420) 2 .569)

leg5)
ume
3.316) ((1 0) 2 5) (0 9397 .3420) -2 .569)
5.7313) ((1 0) 9 5) (0 9397 -0 .3420) -2 .569)

leg6)
ume
3.316) (d 0) 2 5) (0 9397 3420) 2 569)
5.7313) (d 0) 9 5) (0 9397 -0 3420) 2 569)

))

)

))

)))

))

)))

)))

plan-machine-t .lisp Wed Nov 28 10:11:05 1990

; ; ; -*- Mode : Common-Lisp; Base: 10 -*-

**

plan-state flavor definition

**

(def flavor plan-state ((decision nil) (observation nil) (command nil)
(condition nil)

)

(state)
: init able-instance -variables)

(defmethod (plan-state :generate-command)
()

command)

(defmethod (plan-state : change)
(given-decision observed-state given-condition)

(cond ((and decision (listp decision))

(cond ((equal given-decision (first decision)

)

(first next-state)

)

((equal given-decision (second decision)

)

(second next-state)

)

(t self)))
(condition
(if (and (equal given-cone ition condition)

(equal observed-state observation)

)

next-state
self)

)

(t

(cond ((equal observed-state observation)
next-state)

((equal given-decision decision)
next-state)
(t self)))))

**

plan-state-machinie flavor definition

**

(defflavor plan-state-machine ((decision nil) (observation nil)
(condition nil) (lift-ready-flag nil)

, control-machine)
(state-machine)

: initable-instance-variables)

(defmethod (plan-state-machine rinitti)
(leg-name)

(if (member leg-name ' (legl leg4 leg5)

)

plan-machine-t .lisp Wed Nov 28 10:11:05 1990

(send self : init-plan-machine ' eligible-to-lif t

)

(send self : init-plan-machine 'available-leg))
(setf control-machine (send owner : control-machine))

)

(defmethod (plan-state-machine : init-plan-machine)
(a-state-name)

(let (available-leg planned-contact eligible-to-lif

t

planned-lift actual-lift planned-exchange)
(setf actual-lift

(make-instance 'plan-state
:name 'actual-lift
: observation 'ready
•.command ' recover-command))

(setf planned-lift
(make-instance 'plan-state

:name 'planned-lift : condition 'stable-without
: observation 'support
:next-state actual-lift))

(setf planned-exchange
(make-instance 'plan-state

:name 'planned-exchange rcondition ' interlock-confirm
robservation 'support
:next-state actual-lift))

(setf eligible-to-lift
(make-instance 'plan-state

:name 'eligible-to-lift
:decision ' (lift exchange)
:next-state (list planned-lift planned-exchange))

)

(setf planned-contact
(make-instance 'plan-state

-.name 'planned-contact : observation 'contact
: command 'deploy-command
:next-state eligible-to-lift))

(setf available-leg
(make-instance 'plan-state

:name 'available-leg : decision 'place
:next-state planned-contact))

(send actual-lift : set-next-state available-leg)

(setf state (cond ((equal a-state-name (send available-leg : state-name)

)

available-leg)
((equal a-state-name (send planned-contact : state-name)

)

planned-contact

)

((equal a-state-name (send eligible-to-lift : state-name)

)

eligible-to-lift)
((equal a-state-name (send planned-lift : state-name)

)

planned-lift)
((equal a-state-name (send planned-exchange : state-name)

)

planned-exchange)
((equal a-state-name (send actual-lift :state-name)

)

actual-lift))

)

)

)

(defmethod (plan-state-machine : change rbefore)
()

(setf observation (send control-machine : state-name)

)

(cond ((and (equal (send state : state-name) 'planned-exchange)
(send owner : interlock-conf irm)
(send owner : stable-without -p)

plan-machine-t . lisp Wed Nov 28 10:11:05 1990

(send owner :lift-ok))
(setf lift-ready-flag t)

(setf condition ' interlock-conf irm)

)

((and (equal (send state :state-narne)
(send owner : stable-without-p)
(send owner :lift-ok))

(setf lift-ready-flag t)

(setf condition 'stable-without))
(t

(setf condition nil)
(setf lift-ready-flag nil))

)

' planned-lift)

(defmethod (plan-state-machine rchange)

(setf observation (send control-machine : state-name)

)

(cond ((and (equal (send state :state-name) 'planned-exchange)
(send owner : interlock-conf irm)
(send owner : stable-without-p)
(send owner :lift-ok))

(setf lift-ready-flag t)

(setf condition ' interlock-conf irm))

((and (equal (send state :state-name) 'planned-lift)
(send owner : stable-without-p)
(send owner :lift-ok))

(setf lift-ready-flag t)

(setf condition 'stable-without))
(t

(setf condition nil)
(setf lift-ready-flag nil))

)

(setf state (send state :change decision observation condition)

)

; (defmethod (plan-state-machine :change :after)

(send control-machine : send-command
(send state rgenerate-command)

)

(if (and lift-ready-flag
(equal (send self : state-name) 'actual-lift))

(send owner : lifted)))

(defmethod (plan-state-machine
(a-decision)

(setf decision a-decision)

)

send-decision)

robot-tl.lisp Wed Nov 28 10:12:11 1990 1

; ; ;
-*- Mode : Common-Lisp; Base: 10 -*-

**

robot flavor definition

**

(defflavor robot (legs body vision-system joystick
(lift-able-legs nil)
(place-able-legs nil) (supporting-legs nil)
(supporting-p-legs nil)
(joy-command '(0 0)) lift-queue lift-flag)

: initable-instance-variables
: gettable-instance-variables)

(defmethod (robot :initti)

(send graph-asv :init-data)
(setf vision-system (make-instance ' vision-sy3tem :owner self))
(send vision-system :initti)
(setf joystick (make-instance 'joystick))
(send joystick : reset)
(empty-queue lift-queue)
(setf lift-flag t)

(let ((H))
(setf body (make-instance 'body :owner self))
(setf H (send body :initti))
(setf legs (list

(make-instance 'leg :name ' legl :owner self)
(make-instance 'leg :name ' leg2 : owner self)
(make-instance 'leg :name ' leg3 : owner self)
(make-instance 'leg :name ' leg4 : owner self)
(make-instance 'leg :name ' leg5 : owner self)
(make-instance 'leg :name ' leg6 : owner self)

))

(mapcar #' (lambda (a-leg) (send a-leg :initti H)) legs))
)

(defmethod (robot : find-lift-able-legs)

(delete nil (mapcar #' (lambda (a-leg) (send a-leg : lift-able)) legs)))

(defmethod (robot : find-place-able-legs)

(delete nil (mapcar #' (lambda (a-leg) (send a-leg :place-able)) legs))

)

(defmethod (robot : find-supporting-legs)

(delete nil (mapcar #' (lambda (a-leg) (send a-leg supporting)) legs)))

robot-tl.lisp Wed Nov 28 10:12:11 1990 2

(defmethod (robot : f ind-supporting-p-legs)

(delete nil (mapcar #' (lambda (a-leg) (send a-leg : supporting-p)) legs)))

(defmethod (robot :get-body-rotate-ratel)

(send body :get-body-rotate-ratel)

)

(defmethod (robot :get-body-rotate-ratelO)

(send body :get-body-rotate-ratelO)

)

(defmethod (robot :get-body-trans-ratel)
()

(send body :get-body-trans-ratel)

)

(defmethod (robot :get-body-trans-ratelO;

(send body :get-body-trans-ratelO)

)

(defmethod (robot :get-estimated-support-plane)

(send body :get-estimated-support-plane))

(defmethod (robot :get-Hl)

(send body :get-Hl)

)

(defmethod (robot :get-H6)
()

(send body :get-H6)

)

(defmethod (robot :get-H10)

(send body :get-H10)

)

(defmethod (robot :get-inv-Hl)
.

(send body :get-inv-Hl)

)

(defmethod (robot :get-inv-H6)

(send body :get-inv-H6)

)

robot-tl.lisp Wed Nov 28 10:12:11 1990

(defmethod (robot :get-inv-H10)
()

(send body :get-inv-H10)

)

(defmethod (robot :lift-ok)
(leg-name)

(cond (lift-flag
(cond ((equal leg-name (send (first lift-queue) :name)

)

(setf lift-flag nil)
t)

(t

nil)))

(t nil)))

(defmethod (robot : lifted)
(leg-name)

(if (equal leg-name (send (first lift-queue) :name)

)

(dequeue lift-queue)
(print (list "error in lifting" leg-name)))

)

(defmethod (robot :permitted-cell)
(t-cell)

(send vision-system :permitted-cell t-cell)

)

(defmethod (robot : scanning)

(send vision-system : scanning))

(defmethod (robot : stable-without -p)
(a-leg)

(send body :stable-p
(remove a-leg support ing-p-legs))

)

(defmethod (robot :terrain-point)
(t-cell)

(send vision-system : terrain-point t-cell)

**

prolog interface robot methods

robot-tl.lisp Wed Nov 28 10:12:11 1990 4

(defmethod (robot : at-tk.m-limit)

(let ((limit-leg
(car (delete nil

(mapcar #' (lambda (a-leg) (send a-leg :TKM-lirnit)) lift-able-legs)))))
(setf supporting-legs (remove limit-leg

supporting-legs)

)

(setf lift-able-legs (remove limit-leg
lift-able-legs)

)

limit-leg)

)

(defmethod (robot :check-stability-p)

(send body :stable-p-m supporting-p-legs (first lift-queue))

(defmethod (robot :check-tkm-limit-p)

(delete nil
(mapcar #' (lambda (a-leg) (send a-leg :TKM-limit-p)) supporting-p-legs)))

(defmethod (robot : do-recovery)
()

(car
(delete nil

(mapcar #' (lambda (a-leg) (send a-leg : with-foothold)) place-able-legs))

(defmethod (robot : execute-planned-motion)

(mapcar #' (lambda (a-leg) (send a-leg : do-planned-motion)) legs)

)

(defmethod (robot : graphical-display)

(send graph-asv rdisplay (send body :get-Hl)
(mapcar #' (lambda (a-leg) (send a-leg : leg-pos-wrt-body)) legs))

)

(defmethod (robot :has-more-tkm)
(legl leg2)

(> (send legl :tkm)
(send leg2 :tkm))

)

(defmethod (robot : leg-with-new-foothold)
(>

; return a-leg with new-foothold.
(do ((new-foothold-flags (mapcar #' (lambda (a-leg) (send a-leg :new-foothold)) plac

e-legs)
(mapcar #' (lambda (a-leg) (send a-leg :new-foothold)) plac

e-legs)

)

(a-leg nil))

robot-tl.lisp Wed Nov 28 10:12:11 1990

((or (nil-list new-foothold-flags)
a-leg)

(if a-leg a-leg nil)

)

(setf a-leg (send self :max-sm-leg nil)))

)

(defmethod (robot :max-sm-leg)
(a-leg)

; max-sm-leg without supporting a-leg
(let (legs-with-foothold)

(cond (place-able-legs
(setf legs-with-foothold

(remove nil (mapcar #' (lambda (leg)
(if (send leg :has-foothold-p)

leg
nil))

place-able-legs))

)

(cond (legs-with-foothold
(do ((legs (cdr legs-with-foothold) (cdr legs)

)

(largest-leg (car legs-with-foothold) largest-leg)
(temp-support-legs (remove a-leg supporting-legs))

)

((null legs)
(if (send body :stable (cons largest-leg temp-support-legs))

largest-leg
nil))

(if (send body :more-stable temp-support-legs
(car legs) largest-leg)

(setf largest-leg (car legs))))

)

(t nil))

)

(t nil))))

(defmethod (robot :modify-command)
()

(send body :modify-command))

(defmethod (robot : wait-for-lift)

(delete nil
(mapcar #' (lambda (a-leg) (send a-leg : lift-not-done)) supporting-p-legs))

)

(defmethod (robot : read- joystick)

(let ((joy-value (send joystick :get- joy-value))

)

(setf joy-command
(reverse (cdr (reverse (send joystick :get- joy-value))))

)

(if (fourth joy-value)
nil
t)))

(defmethod (xobot : restore-command)

(send body :restore-command)

)

(defmethod (robot :before : send-decision)

robot -tl. lisp Wed Nov 28 10:12:11 1990

(legl leg2 a-decision)
(cond ((equal a-decision 'exchange)

(enqueue lift-queue legl)

)

((equal a-decision 'lift)
(enqueue lift-queue legl)))

)

(defmethod (robot :send-decision)
(legl leg2 a-decision)

(cond ((equal a-decision 'exchange)
(send legl : send-decision a-decision)
(send leg2 : send-decision 'place)
(send legl :send-exchange leg2))

(t

(send legl : send-decision a-decision))))

(defmethod (robot : smallest-tkm-leg)

; select smallest-TKM-leg
; tkm is nil or positive

(do ((legs (cdr lift-able-legs) (cdr legs)

)

(smallest-leg (car lift-able-legs)

)

(smallest -tkm nil) (tkm nil)

)

((null legs) smallest-leg)
(setf smallest-tkm (if (send smallest-leg :tkm)

(send smallest-leg :tkm) -1000))
(setf tkm (if (send (car legs) :tkm)

(send (car legs) :tkm) -1000))
(if (> smallest-tkm tkm) (setf smallest-leg (car legs))

)

(if (and (equal smallest-tkm -1000) (equal tkm -1000))
"Error : more than one legs are out of kinematic limit")))

(defmethod (robot : slow-down-robot)

(send body :slow-down))

(defmethod (robot : speed-up-robot)

(send body : speed-up))

(defmethod (robot : stable)

(send body :stable supporting-legs))

(defmethod (robot :stable_m)
<>

(send body :stable-m supporting-legs))

(defmethod (robot : stable-without)
(a-leg)

(send body :stable (remove a-leg supporting-legs)))

robot-tl . lisp Wed Nov 28 10:12:11 1990

(defmethod (robot :update-robot-status)

(setf lift-f lag't)
(setf lift-able-legs (send self : f ind-lift-able-legs))

(setf place-able-legs (send self : find-place-able-legs))

(setf supporting-legs (send self : f ind-supporting-legs)

)

(setf supporting-p-legs (send self : find-supporting-p-legs))

(mapcar #' (lambda (a-leg) (send a-leg :update-tkm-p)) supporting-p-legs)
(if (send self :check-tkm-limit-p)

(send body : stop-motion (send self :check-tkm-limit-p)

)

(send body : restore-motion)

)

(if (not (send self :check-stability-p)

)

(send body :modify-command-p)
(send body : restore-command-p)

)

(send body :calculate-motion joy-command legs)
(mapcar #' (lambda (a-leg) (send a-leg : select-foothold)) place-able-legs)
(mapcar #' (lambda (a-leg) (send a-leg :update-tkm)) supporting-legs))

(defun create-terrain ()

(send graph-terrain :create))

(defun kill-terrain ()

(send graph-terrain :kill))

**

; prolog interface functions

**

(defun at_tkm_limit ()

(send asv :at-tkm-limit)

)

(defun do_recovery ()

(send asv : do-recovery)

)

(defun execute_planned_motion ()

(send asv : execute-planned-motion)

)

(defun graphical_display (),

(send asv :graphical-display)

)

(defun has_more_tkm(legl leg2)
(send asv :has-more-tkm legl leg2))

robot-tl.lisp Wed Nov 28 10:12:11 1990

(defun inits ()

(send asv :initti))

(defun leg_with_new_foothold (

)

(send asv : leg-with-new-foothold)

)

(defun max_sm_leg (a-leg)
(send asv :max-sm-leg a-leg)

)

(defun modify_command (

)

(send asv :modify-command)

)

(defun read_joystick (

)

(send asv : read- joystick)

)

(defun restore_command ()

(send asv : restore-command)

)

(defun send_decision (legl leg2 a-decision)
(send asv :send-decision legl leg2 a-decision))

(defun smallest_tkm_leg ()

(send asv : smallest-tkm-leg)

)

(defun slow_down_robot ()

(send asv : slow-down-robot)

)

(defun speed_up_robot (

)

(send asv : speed-up-robot)

)

(defun stable_p()
(send asv : stable))

i

(defun stable_p_m()
(send asv": stable m))

(defun stable_without (a-leg)
(send asv : stable-without a-leg))

robot-tl.lisp Wed Nov 28 10:12:11 1990

(defun update_robot_status (

)

(send asv : update-robot-status)

)

robot-translation. lisp Thu Nov 29 13:11:55 1990

(f s : add-logical-pathname-host "robot" "root5"
' (("kwak" "supermac : kwak :

")))

robot-translation. lisp Thu Nov 29 13:11:55 1990

(f s :add-logical-pathname-host "robot" "root5"
'(("kwak" "supermac:kwak:")))

robot444.1isp Thu Nov 29 11:34:42 1990 1

; ; ; -*- Mode : Common-Lisp; Package :USER; Base: 10 -*-
•••a**

r

; top level motion planning coordinator

.a**

(defun my-monitor (&rest args)
(let ((x (mapcar #'my-output args)))

(if (remove nil x)

(my-print x))

)

t)

(defun my-output (arg)

(cond ((typep arg 'leg) (send arg :name))

((typep arg 'atom) arg)

((typep arg 'list) (cons (my-output (car arg))
(my-output (cdr arg)))

)

(t 'error))

)

(defmacro retract (predicate Soptional (argument t))

'(cond ((not (boundp (quote , predicate))

)

nil)
((and , predicate (equal , argument '?))

(setf , predicate (cdr , predicate))
t)

((member , argument , predicate :test 'equal)
(setf , predicate (remove , argument , predicate :count 1)

)

t)

(t nil)))

(defmacro asserta (predicate ^optional (argument t)

)

'(cond ((not (boundp (quote , predicate))

)

(setf , predicate nil)
(setf , predicate (cons , argument , predicate))

)

(t (setf , predicate (cons , argument , predicate))))

)

(defmacro assertz (predicate Soptional (argument t)

)

Mcond ((not (boundp (quote , predicate)))

(setf , predicate nil)
(setf , predicate (append , predicate (list , argument)))

)

(t (setf , predicate (append , predicate (list , argument)))))

)

(defmacro match (predicate Soptional (argument t)

)

'(cond ((not (boundp (quote , predicate))

)

nil)
((member , argument , predicate :test 'equal)
t)

(t nil))

)

(defmacro unify (predicate argument)
'(cond ((not (boundp (quote , predicate))

)

robot444.1isp Thu Nov 29 11:34:42 1990 1

;;; _*_ Mode : Common-Lisp; Package :USER; Base: 10 -*-
.•A***

; top level motion planning coordinator

.••••a**

(defun my-monitor (&rest args)
(let ((x (mapcar #'my-output args)))

(if (remove nil x)

(my-print x))

)

t)

(defun my-output (arg)

(cond ((typep arg 'leg) (send arg :name))

((typep arg 'atom) arg)

((typep arg 'list) (cons (my-output (car arg))
(my-output (cdr arg)))

)

(t 'error)))

(defmacro retract (predicate &optional (argument t))
'(cond ((not (boundp (quote , predicate))

)

nil)
((and , predicate (equal , argument '?))
(setf , predicate (cdr , predicate))
t)

((member , argument , predicate :test 'equal)
(setf , predicate (remove , argument , predicate :count 1)

)

t)

(t nil)))

(defmacro asserta (predicate &optional (argument t))
1 (cond ((not (boundp (quote , predicate))

)

(setf , predicate nil)
(setf , predicate (cons , argument , predicate))

)

(t (setf , predicate (cons , argument /predicate)))))

(defmacro assertz (predicate &optional (argument t)

)

Mcond ((not (boundp (quote , predicate)))

(setf ,predicate nil)
(setf ,predicate (append /predicate (list , argument)))

)

(t (setf /predicate (append /predicate (list , argument))))

)

(defmacro match (predicate ^optional (argument t)

)

1 (cond ((not (boundp (quote /predicate)))
nil)
((member , argument /predicate :test 'equal)
t)

(t nil)))

(defmacro unify (predicate argument)
Mcond ((not (boundp (quote /predicate)))

robot444 .lisp Thu Nov 29 11:34:42 1990

nil)
(t (setf , argument (car , predicate))))

)

; robot :- initialize, repeat, my_loop, fail.

; initialize :- inits, init_ditch_plan.

; init_dicth_plan :- retract (plan_cycle (_)) , retract (plan_state (_)) , fail.
; init_ditch_plan :- asserta (plan_cycle (1)) , asserta (plan_state (place_legs_in_the_air

; my_loop :- get_comrnand, plan, execute, !.

; get_command :- X is read_joystick.

; plan :- ditch_mode, ditch_plan.
; plan :- normal_plan.

; ditch_mode :- ditch_mode (in) . ; ; cleared by ditch_plan.
; ditch_mode :- X is at_ditch_area, X == t, asserta (ditch_mode (in))

.

; execute :- execute_motion, draw_robot, !.

; execute_motion :- X is execute_planned_motion.

; draw_robot : - X is graphical_display

.

(defun robot ()

(create -terra in)
(robot 1)

(kill-terrain)

)

(defun robotl ()

(initialize)
(do ()

((not (my_loop))))

)

(defun initialize ()

(cond ((and (inits)
(init_ditch_plan))

t)

(t nil)))

(defun init_ditch_plan ()

(cond ((and (not (setf ditch_mode nil)

)

(not (setf plan_cycle nil)

)

(not (setf plan_state nil)

)

(not (setf limit_leg nil)

)

robot444.1isp Thu Nov 29 11:34:42 1990 3

(not (setf reduce_speed nil)

)

(not (setf f ront_legs nil)

)

(not (setf middle_legs nil)

)

(not (setf rear_legs nil)

)

(not (setf decision nil)

)

(asserta plan_cycle 1)

(asserta plan_state ' place_legs_in_the_air)

)

t)

(t nil)))

(defun my_loop()
(process -aHow- schedule)
(cond ((and (get_command)

(plan)
(execute)

)

t)

(t nil))

)

(defun get_command ()

(cond (t (read_joystick))

(t nil)))

(defun plan ()

(cond ((and (ditch_mode)
(ditch_plan)

)

t)

((normal_j?lan)
t)

(t nil))

)

(defun ditch_mode
(cond ((match ditch_mode 'in)

t)

((and (at_ditch_area)
(asserta ditch_mode 'in))

t)

(t nil))

)

(defun execute ()

(cond ((and (execute_motion)
(draw_robot)

)

t)

(t nil)))

i

(defun execute_motion ()

(cond (t (execute_planned_motion) t)

(t nil)))

(defun draw_robot()
(cond (t (graphical_display) t)

(t nil)))

robot 4 4 4. lisp Thu Nov 29 11:34:42 1990

**

Normal Plan

**

; normal_plan :- update_robot_state, check_tkm_limit,
; leg_plan, body_plan, generate_decision, !

.

; update_robot_state :- X is update_robot_status

.

check_tkm_limit :- A_leg is at_tkm_limit, A_leg \== nil,
asserta (limit_leg (A_leg, lift)) .

check_tkm_limit

.

; leg_plan :- lift_a_leg.
; leg_plan :- exchange_legs

.

; leg_plan :- stable.
; leg_plan :- place_a_leg.
; leg_plan :- wait_for_legs

.

; stable :- Condition is stable_p, Condition == t.

lift_a_leg :- stable, A_leg is smallest_tkm_leg, A_leg \== nil,
Condition is stable_without (A_leg) , Condition == t,

asserta (decision (A_leg,_, lift))

.

exchange_legs :- stable, LegA is smallest_tkm_leg, LegA \== nil,
LegB is max_sm_leg (LegA) , LegB \== nil,
Condition is has_more_tkm (LegB, LegA) ,

Condition == t,

asserta (decision (LegA, LegB, exchange)) .

; place_a_leg :- A_leg is max_sm_leg (_) , A_leg \== nil,
; asserta (decision (A_leg,_, place))

.

; wait_for_legs
; wait_for_legs
; wait_for_legs

- try_new_foothold.
- recovery, asserta (reduce_speed)

.

- asserta (reduce_speed) , restore_limit_leg.

; try_new_foothold :- A_leg is leg_with_new_foothold, A_leg \== nil,
; asserta (decision (A_leg,_, place))

.

; recovery :- A_leg is do_recovery, A_leg \== nil,
; asserta (decision (A_leg,_, place)) , restore_limit_leg.

; restore_limit_leg :- retract (limit_leg (A_leg, lift)) .

; restore_limit_leg.

(defun normal_plan ()

(cond ((and (update_robot_state)
(check tkm limit)

robot444.1isp Thu Nov 29 11:34:42 1990 5

(leg_plan)
(body_plan)
(my-monitor limit_leg decision reduce_speed)
(generate_decision)

)

t)

(t nil))

)

(defun update_robot_state ()

(cond ((update_robot_status)
t)

(t nil))

)

(defun check_tkm_limit
(let ((leg))

(cond ((setf leg (at_tkm_limit)

)

(asserta lirnit_leg (list 'lift leg))
t)

(t t)

(t nil))))

(defun leg_plan()
; OR tree becomes regular "cond" statement

(cond ((lift_a_leg) t)

((exchange_leg) t)

{(stable) t)

((place_a_leg) t)

((wait_for_legs) t)

(t nil)))

(defun stable ()

(cond ((stable_p) t)

(t nil)))

(defun lift_a_leg()
(let ((leg))

(cond ((and (stable)
(setf leg (smallest_tkm_leg)

)

(stable_without leg)
(asserta decision (list 'lift leg)))

(t nil))))

(defun exchange_leg ()

(let ((lega) (legb)

)

(cond ((and (stable)
(setf lega (smallest_tkm_leg)

)

(setf legb (max_sm_leg lega)

)

(has_more_tkm legb lega)
(asserta decision (list 'exchange lega legb)))

t)

robot444.1isp Thu Nov 29 11:34:42 1990

(t nil)))

)

(defun place_a_leg (

)

(let ((leg))
(cond ((and (setf leg (max_sm_leg nil))

(asserta decision (list 'place leg)))
t)

(t nil)))

)

(defun wait_for_legs ()

; OR
(cond ((try_new_footholds) t)

((recovery) (asserta reduce_speed) t)

((asserta reduce_speed) (restore_limit_leg) t)

(t nil)))

(defun try_new_footholds ()

(let ((leg))
(cond ((and (setf leg (leg_with_new_foothold)

)

(asserta decision (list 'place leg)))
t)

(t nil)))

)

(defun recovery ()

(let ((leg))
(cond ((setf leg (do_recovery)

)

(asserta decision (list 'place leg))
(restore_limit_leg)
t)

(t nil)))

)

(defun restore_limit_leg ()

; OR
(cond ((and (unify limit_leg leg)

(retract limit_leg leg)

)

t)

(t t)

(t nil)))

**

Ditch Plan

**

ditch_plan :- ditch_plan._done, retract (ditch_mode (in)) , idle_cycle,
ditch_plan :- cycle_planner

.

********** Cycle planner ************

robot444.1isp Thu Nov 29 11:34:42 1990 7

; ditch_plan_done :- plan_cycle (6) , retract (plan_cycle (6)) , asserta (plan_cycle (1))

,

; prepare_next_ditch_plan

.

; prepare_next_ditch_plan :- move.

; cycle_planner :- one_cycle_done, plan_cycle (N) , Nl is N+l, retract (plan_cycle (N)) , as:

ta (plan_cycle (Nl))

,

; idle_cycle.
; cycle_planner :- plan_cycle.

:********* plan Cycle dispatcher ************

; one_cycle_done :- plan_state (one_plan_cycle_done) , retract (plan_state (one_plan_cycle_c
e)),
; initialize_plan_state

.

; plan_cycle :- plan_cycle (1) , update_robot_state, ditch_plan_cycle_l, bodyjplan, genera
_decision, !

.

; plan_cycle :- plan_cycle (2) , update_robot_state, ditch_jplan_cycle_2, body_plan, genera
_decision, !

.

; plan_cycle :- plan_cycle (3) , update_robot_state, ditch_plan_cycle_3, body_plan, genera
_decision, !

.

; plan_cycle :- plan_cycle (4) , update_robot_state, ditch_plan_cycle_4, body_plan, genera
_decision, !

.

; plan_cycle :- plan_cycle (5) , update_robot_state, ditch_plan_cycle_5, body_plan, genera
_decision, !

.

; idle_cycle :- update_robot_state, body_plan, generate_decision, !.

(defun ditch_plan ()

(cond ((and (ditch_plan_done)
(retract ditch_mode 'in)
(idle_cycle)

)

t)

((cycle_planner)
t)

(t nil)))

********** Cycle planner ************

(defun ditch_plan_done ()

(cond ((and (match plan_cycle 6)

(retract plan_cycle 6)

(asserta plan_cycle 1)

(prepare_next_ditch_plan)

)

t)

(t nil))

)

(defun prepare_next_ditch_plan ()

robot444.1isp Thu Nov 29 11:34:42 1990

(cond ((move)
t)

(t nil))

)

(defun cycle_j)lanner {)

(cond ((and (one_cycle_done)
(unify plan_cycle N)

(retract plan_cycle N)

(asserta plan_cycle (+ N 1))

(idle_cycle)

)

t)

((plan_cycle)
t)

(t nil)))

********** plan Cycle Dispatcher ************

(defun one_cycle_done ()

(cond ((and (match plan_state ' one_plan_cycle_done)
(retract plan_state ' one_plan_cycle_done)
(initialize_plan_state)

)

t)

(t nil)))

(defun plan_cycle ()

(cond ((and (match plan_cycle 1)

(update_robot_state)
(ditch_plan_cycle_l)
(body_plan)
(my-monitor plan_cycle plan_state decision reduce_speed)
(generate_decision)

)

t)

((and (match plan_cycle 2)

(update_robot_state)
(ditch_plan_cycle_2)
(body_plan)
(my-monitor plan_cycle plan_state decision reduce_speed)
(generate_decision)

)

t)

((and (match plan_cycle 3)

(update_robot_state)
(ditch_plan_cycle_3)
(body_plan)
(my-monitor plan_cycle plan_state decision reduce_speed)
(generate_decision)

)

t)

((and (match plan_cycle 4)

(update_robot_state)
(ditch_plan_cycle_4)
(body_jplan)
(my-monitor plan_cycle plan_state decision reduce_speed)
(generate_decision)

)

t)

((and (match plan_cycle 5)

(update robot state)

robot444 . lisp Thu Nov 29 11:34:42 1990

(ditch_plan_cycle_5)
(body_plan)
(my-monitor plan_cycle plan_state decision reduce_speed)
(generate_decision)

)

t)

(t nil))

)

(defun idle_cycle
(cond ((and (update_robot_state)

(body_j?lan)
(my-monitor plan_cycle plan_state decision reduce_speed)
(generate_decision)

)

t)

(t nil))

)

********** cycles *********

; initialize_plan_state :- asserta (plan_state (start)) .

; ditch_plan_cycle_l :- plan_state (start) , retract (plan_state (start)) , asserta (plan_stat
place_legs_in_the_air))

,

place_legs_in_the_air (back_middle_legs)

.

- place_legs_in_the_air (back_middle_legs)

.

- back_middle_legs (forward_rear_legs)

.

- forward_rear_legs (forward_middle_legs)

.

- forward_middle_legs (forward_front_legs)

.

- forward_front_legs (lift_middle_legs_and_move)

.

- lift_middle_legs_and_move (one_plan_cycle_done)

.

; ditch_plan_cycle_l
; ditch_plan_cycle_l
; ditch_plan_cycle_l
; ditch_plan_cycle_l
; ditch_plan_cycle_l
; ditch_plan_cycle_l

; ditch_plan_cycle_2
back_middle_legs)) ,

; ditchj>lan_cycle_2
; ditch_plan_cycle_2
; ditch_plan_cycle_2

- plan_state (start) , retract (plan_state (start)) , asserta (plan_stat

back_middle_legs (forward_rear_legs)

.

- back_middle_legs (forward_rear_legs)

.

- forward_rear_legs (forward_middle_legs)

.

- forward_middle_legs (one_plan_cycle_done)

.

; ditch_plan_cycle_3 :- plan_state (start) , retract (plan_state (start)) , asserta (plan_stat
move_forward_f ront_legs))

,

move_forward_front_legs (move_forward_middle_legs)

.

; ditch_pl£ 1n_cycle_3
; ditch__plan_cycle_3
; ditch_plan_cycle_3

- move_forward_front_legs (move_back_middle_legs)

.

- move_back_middle_legs (move_forward_rear_legs)

.

- move_forward_rear_legs (one_plan_cycle_done)

.

; ditch_plan_cycle_4 :- plan_state (start) , retract (plan_state (start)) , asserta (plan_stat
move_forward_middle_legs))

,

; move_forward_middle_legs (one_plan_cycle_done)

.

; ditch_plan_cycle_4 :- move_forward_middle_legs (one_plan_cycle_done)

.

; ditch_plan_cycle_5 :- plan_state (start) , retract (plan_state (start)) , asserta (plan_stat

move_forward_f ront_legs))

,

robot444.1isp Thu Nov 29 11:34:42 1990 10

; ditch__plan_cycle_5
; ditch_plan_cycle_5
; ditch_plan_cycle_5

move_forward_f ront_legs (move_forward_middle_legs

)

- rnove_forward_f ront_legs (move_back_middle_legs)

.

- move_back_middle_legs (move_forward_rear_legs)

.

- move_forward_rear_legs (one_plan_cycle_done)

.

.*************** Cycles ****************

(defun initialize_plan_state ()

(cond ((asserta plan_state 'start)
t)

(t nil)))

(defun ditch_plan_cycle_l ()

(cond ((and (match plan_state 'start)
(retract plan_state 'start)
(asserta plan_state ' place_legs_in_the_air)
(place_legs_in_the_air ' back_middle_legs)

)

t)

((place_legs_in_the_air 'back_middle_legs)
t)

((back_middle_legs ' forward_rear_legs)
t)

((forward_rear_legs ' forward_middle_legs)
t)

((forward_middle_legs ' forward_f ront_legs)
t)

((forward_front_legs ' lift_middle_legs_and_move)
t)

((lift_middle_legs_and_move ' one_plan_cycle_done)
t)

(t nil)))

(defun ditch_plan_cycle_2 ()

(cond ((and (match plan_state 'start)
(retract plan_state 'start)
(asserta plan_state 'back_middle_legs)
(back_middle_legs ' forward_rear_legs)

)

t)

((back_middle_legs ' forward_rear_legs)
t)

((forward_rear_legs ' forward_middle_legs)
t)

((forward_middle_legs ' one_plan_cycle_done)
t)

(t nil)))

(defun ditch_plan_cycle_3 ()

(cond ((and (match plan_state 'start)
(retract plan_state 'start)
(asserta plan_state 'move_forward_front_legs)
(move_forward_front_legs 'move_back_middle_legs))

t)

((move_forward_front_legs 'move_back_middle_legs)
t)

((move_back_middle_legs 'move_forward_rear_legs)
t)

((move_forward_rear_legs ' one_plan_cycle_done)

robot444.1isp Thu Nov 29 11:34:42 1990 11

t)

(t nil))

)

(defun ditch_plan_cycle_4 ()

(cond ((and (match plan_state 'start)
(retract plan_state 'start)
(asserta plan_state ' move_forward_middle_legs)
(rnove_forward_middle_legs ' one_plan_cycle_done)

)

t)

((move_forward_middle_legs ' one_plan_cycle_done)
t)

(t nil)))

(defun ditch_plan_cycle_5 ()

(cond ((and (match plan_state 'start)
(retract plan_state 'start)
(asserta plan_state ' move_forward_f ront_legs)
(move_forward_front_legs 'move_back_middle_legs)

)

t)

((move_forward_front_legs 'move_back_middle_legs)
t)

((move_back_middle_legs 'move_forward_rear_legs)
t)

((move_forward_rear_legs ' one_plan_cycle_done)
t)

(t nil)))

************** states ***************

; back_middle_legs (Next_State) :- plan_state (back_middle_legs) , back_middle_legs_done,
retract (plan_state (back_middle_legs)) , asserta (plan_st

e (Next_State))

,

stop.
back_middle_legs (Next_State) :- plan_state (back_middle_legs) , do_back_middle_legs,

stop.

; forward_front_legs (Next_State) :- plan_state (forward_front_legs)) , forward_front_legs_
ne,

retract (plan_state (forward_front_legs) , asserta (plan
tate (Next_State))

,

i stop.
; forward_front_legs (Next_State) :- plan_state (forward_front_legs)) , do_forward_f ront_le
r

stop.

; forward_middle_legs (Next_State) :- plan_state (forward_middle_legs) , forward_middle_lec

robot444.1isp Thu Nov 29 11:34:42 1990 12

done,
; retract (plan_state (forward_middle_legs) , asserta

(

_state (Next_State))

,

; stop.
; forward_middle_legs (Next_State) :- plan_state (forward_middle_legs) , do_forward_middl
gs,

stop.

; forward_rear_legs (Next_State) :- plan_state (forward_rear_legs) , forward_rear_legs_do
retract (plan_state (forward_rear_legs) , asserta (plan

te(Next_State))

,

stop

.

; forward_rear_legs (Next_State) :- plan_state (forward_rear_legs) , do_forward_rear_legs
; stop.

lift_middle_legs_and_move (Next_State) :- plan_state (lift_middle_legs_and_move) , move
e, stop,

retract (plan_state (lift_middle_legs_and_mo\i
asserta (plan_state (Next_State))

.

lift_middle_legs_and_move (Next_State) :- plan_state (lift_middle_legs_and_move) , do_l
middle_legs , move.

move_back_middle_legs (Next_State) :- plan_state (move_back_middle_legs) , move_back_mi
legs_done,

retract (plan_state (move_back_rniddle_legs)) , ass
(plan_state (Next_State))

.

move_back_middle_legs (Next_State) :- plan_state (move_back_middle_legs) , do_move_back
dle_legs

.

; move_forward_front_legs (Next_State) :- plan_state (move_forward_front_legs) , move_for
_front_legs_done,

retract (plan_state (move_forward_f ront_legs)) ,

erta (plan_state (Next_State))

.

; move_forward_front_legs (Next_State) :- plan_state (move_forward_front_legs) , do_move_
ard_front_legs

.

; move_forward_middle_legs (Next_State) :- plan_state (move_forward_mlddle_legs) , move_f
rd_middle_legs_done

,

; retract (plan_state (move_forward_front_legs))

serta (plan_state (Next_State))

.

; move_forward_middle_legs (Next_State) :- plan_state (move_forward_middle_legs) , do_mov
rward_middle_legs

.

; move_forward_rear_legs (Next_State) :- plan_state (move_forward_rear_legs) , move_forwa
iddle_legs_done

,

retract (plan_state (move_forward_rear_legs)) , a

ta (plan_state (Next_State)) .

; move_forward_rear_legs (Next_State) :- plan_state (move_forward_rear_legs) , do_move_fo
d_rear_legs

.

robot444.1isp Thu Nov 29 11:34:42 1990 13

; place_legs_in_the_air (Next_State) :- plan_state (place_legs_in_the_air) , place_legs_in
e_air_done,
; retract (plan_state (place_legs_in_the_air)

) , asse:
(plan_state (Next_state))

,

stop.
; place_legs_in_the_air (Next_State) :- plan_state (place_legs_in_the_air) , do_place_legs
the air, stop.

************** states ***************

(defun back_middle_legs (next_state)
(cond ((and (match plan_state ' back_middle_legs)

(back_middle_legs_done)
(retract plan_state ' back_middle_legs)
(asserta plan_state next_state)
(stop)

)

t)

((and (match plan_state 'back_middle_legs)
(do_back_middle_legs

)

(stop))
t)

(t nil))

)

(defun forward_front_legs (next_state)
(cond ((and (match plan_state ' forward_f ront_legs)

(forwa rd_f ront_legs_done

)

(retract plan_state ' forward_f ront_legs)
(asserta plan_state next_state)
(stop)

)

t)

((and (match plan_state ' forward_f ront_legs)
(do_forward_front_legs)
(stop)

)

t)

(t nil))

)

(defun forward_middle_legs (next_state)
(cond ((and (match plan_state ' forward_middle_legs)

(forward_middle_legs_done

)

(retract plan_state ' forward_middle_legs)
(asserta plan_state next_state)

- (stop))
t)

((and (match plan_state ' forward_middle_legs)
(do_fo rward_middle_legs

)

(stop)

)

t)

(t nil))

)

robot444.1isp Thu Nov 29 11:34:42 1990 14

(defun forward_rear_legs (next_state)
(cond ((and (match plan_state ' forward_rear_legs)

(forward_rear_legs_done)
(retract plan_state ' forward_rear_legs)
(asserta plan_state next_state)
(stop)

)

t)

((and (match plan_state ' forward_rear_legs)
(do_fo rwa rd_re a r_legs

)

(stop)

)

t)

(t nil)))

(defun lift_middle_legs_and_move (next_state)
(cond ((and (match plan_state ' lift_middle_legs_and_move)

(move_done)
(stop)
(retract plan_state ' lift_middle_legs_and_move)
(asserta plan_state next_state)

)

t)

((and (match plan_state ' lift_middle_legs_and_move

)

(lift_middle_legs

)

(move)

)

t)

(t nil))

)

(defun move_back_middle_legs (next_state)
(cond ((and (match plan_state 'move_back_middle_legs)

(move_back_middle_legs_done

)

(retract plan_state 'move_back_middle_legs)
(asserta plan_state next_state)

)

t)

((and (match plan_state 'move_back_middle_legs)
(do_move_back_middle_legs)

)

t)

(t nil)))

(defun move_forward_front_legs (next_state)
(cond ((and (match plan_state 'move_forward_front_legs)

(move_forward_front_legs_done)
- (retract plan_state 'move_forward_front_legs)

(asserta plan_state next_state)

)

t)

((and (match plan_state 'move_forward_front_legs)
(do_move_forward_f ront_legs)

)

t)

(t nil))

)

robot444 . lisp Thu Nov 29 11:34:42 1990 15

(defun move_forward_middle_legs (next_state)
(cond ((and (match plan_state 'rnove_forward_middle_legs)

(move_forward_middle_legs_done)
(retract plan_state 'move_forward_middle_legs)
(asserta plan_state next_state)

)

t)

((and (match plan_state ' move_forward_middle_legs)
(do_move_forward_middle_legs)

)

t)

(t nil)))

(defun move_forward_rear_legs (next_state)
(cond ((and (match plan_state 'move_forward_rear_legs)

(move_forward_rear_legs_done)
(retract plan_state 'move_forward_rear_legs)
(asserta plan_state next_state)

)

t)

((and (match plan_state 'move_forward_rear_legs)
(do_move_forward_rear_legs))

t)

(t nil)))

(defun place_legs_in_the_air (next_state)
(cond ((and (match plan_state ' place_legs_in_the_air)

(place_legs_in_the_air_done)
(retract plan_state ' place_legs_in_the_air)
(asserta plan_state next_state)
(stop)

)

t)

((and (match plan_state ' place_leg3_in_the_air)
(do_place_legs_in_the_air)
(stop)

)

t)

(t nil))

)

**************** State Executors ********************

; move_back_middle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed,
clear_middle_lifted_memory, clear_move_memory, stop.

; do_move_back_middle_legs :- all_middle_legs_lifted, move_done, stop, place_middle_leg
ack.
; do_move_back_middle_legs :- all_middle_legs_lifted, move.
; do_move_back_middle_legs :- lift_middle_legs, stop.

robot444 .lisp Thu Nov 29 11:34:42 1990 16

move_forward_front_legs_done :- all_front_legs_lifted, all_front_legs_placed,
clear_f ront_lifted_memory, clear_move_memory, stop,

do_move_forward_front_legs
do_move_forward_f ront_legs
do move forward front_legs

- all_front_legs_lifted, move_done, stop, place_f ront_lec
- all_f ront_legs_lifted, move.
- lift_front_legs, stop.

; move_forward_mlddle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed,
clear_middle_lifted_memory, clear_move_memory, stop,

; do_move_forward_middle_legs :- all_middle_legs_lifted, move_done, stop, place_middle
s

.

; do_move_forward_middle_legs :- all_middle_legs_lifted, move.
; do_move_forward_middle_legs :- lift_middle_legs, stop.

move_forward_rear_legs_done :- all_rear_legs_lifted, all_rear_legs_placed,
clear_rear_lifted_memory, clear_move_memory, stop.

do_move_forward_rear_legs :- all_rear_legs_lifted, move_done, stop, place_rear_legs
do_move_forward_rear_legs :- all_rear_legs_lifted, move.
do_move_forward_rear_legs :- lift_rear_legs, stop.

move :- asserta (resume_movement)
stop :- asserta (stop_movement)

.

clear_move_memory :- retract (move (done)) .

c 1ea r_move_memo ry

.

move_done
move_done
move done

- move (done)

.

- X is at_tkm_limit, X \== nil, asserta (move (done))

.

- X is at_stability limit, X \== nil, asserta (move (done)

)

; back_middle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed, clear_middl<
fted_memory, clear_move_memory

.

do_back_middle_legs :- all_middle_legs_lifted, place_middle_legs_back.
do_back_middle_legs :- lift_middle_legs

.

all_middle_legs_lifted :- middle_legs (lifted) .

all_middle_legs_lifted : - X is both_middle_legs_lifted, X == t, asserta (middle_legs (J

ed)) .
,

all_middle_legs_placed :- X is both_middle_legs_placed, X == t

.

clear_middle_lifted_memory :- retract (middle_legs (lifted)) .

place_middle_legs_back :- A_leg is placable_middle_leg, A_leg \== nil, asserta (decisi

A_leg,_,place_back))

.

; place_middle_legs_back.

robot444.1isp Thu Nov 29 11:34:42 1990 17

; lift_middle_legs :- A_leg is liftable_middle_leg, A_leg \== nil, asserta (decision (A_le
_, lift)).
; lift middle legs.

; forward_front_legs_done :- all_f ront_legs_lifted, all_front_legs_placed, clear_f ront_l
ted_memory, clear_move_memory

.

do_forward_f ront_legs :- all_front_legs_lifted, place_f ront_legs

.

do_forward_front_legs :- lift_front_legs

.

all_front_legs_lifted :- front_legs (lifted)

.

all_front_legs_lifted :- X is both_front_legs_lifted, X == t, asserta (front_legs (lif te

) .

all_front_legs_placed :- X is both_f ront_legs_placed, X == t

.

clear_front_lifted_memory :- retract (front_legs (lifted))

.

place_front_legs :- A_leg is placable_f ront_leg, A_leg \== nil, asserta (decision (A_leg

, place)) .

place_front_legs

.

lift_front_legs :- A_leg is liftable_f ront_leg, A_leg \== nil, asserta (decision (A_leg,
lift)) .

; lift_front_legs

.

; forward_middle_legs_done :- all_middle_legs_lifted, all_middle_legs_placed, clear_midd
_lifted_memory, clear_move_memo ry

.

do_forward_middle_legs :- all_middle_legs_lifted, place_middle_legs

.

do_forward_middle_legs :- lift_middle_legs

.

place_middle_legs :- A_leg is placable_middle_leg, A_leg \== nil, asserta (decision (A_l
,_,place)) .

; place_middle_legs

.

; forward_rear_legs_done :- all_rear_legs_lifted, all_rear_legs_placed, clear_rear_lifte
memory, clear_move_memory

.

do_forward_rear_legs :- all_front_legs_lifted, place_rear_legs

.

do_forward_rear_legs :- lift_rear_legs

.

all_rear_legs_lifted :- rear_legs (lifted)

.

all_rear_legs_lifted : - X is both_rear_legs_lifted, X == t, asserta (rear_legs (lifted))

all_rear_legs_placed :- X is both_rear_legs_placed, X == t.

clear_rear_lifted_memory :- retract (rear_legs (lifted))

.

place_rear_legs :- A_leg is placable_rear_leg, A_leg \== nil, asserta (decision (A_leg,_
lace)) .

place_rear_legs

.

lift_rear_legs :- A_leg is iiftable_rear_leg, A_leg \== nil, asserta (decision (A_leg,_,

robot444.1isp Thu Nov 29 11:34:42 1990 18

ft)) .

; lift rear legs.

do_lift__middle_legs :- lift_middle_legs

; place_legs_in_the_air_done :- X is all_legs_placed, X == t

place_legs :- A_leg is placable_leg, A_leg \== nil,
assert a (decision (A_leg,_, place))

.

place_legs

.

**************** State Executors ********************

(defun move_back_middle_legs_done ()

(cond ((and (all_middle_legs_lifted)
(all_middle_legs_placed)
(clear_middle_lifted_memory)
(clear_move_memory)
(stop)

)

t)

(t nil)))

(defun do_move_back_middle_legs ()

(cond ((and (all_middle_legs_lifted)
(move_done)
(place_middle_legs_back)
(stop)

)

t)

((and (all_middle_legs_lifted)
(move)

)

t)

((and (lift_middle_legs)
(stop)

)

t)

(t nil)))

(defun move_forward_front_legs_done ()

(cond ((and (all_front_legs_lifted)
(all_f ront_legs_placed)
(c lea r_f ront_l i fted_memo ry

)

(clear_move_memory)

robot444.1isp Thu Nov 29 11:34:42 1990 19

(stop)

)

t)

(t nil))

)

(defun do_move_forward_f ront_legs ()

(cond ((and (all_front_legs_lifted)
(move_done)
(place_f ront_legs

)

(stop)

)

t)

((and (all_front_legs_lifted)
(move)

)

t)

((and (lift_f ront_legs)
(stop)

)

t)

(t nil)))

(defun move_forward_middle_legs_done ()

(cond ((and (all_middle_legs_lifted)
(all_middle_legs_placed)
(clear_middle_lifted_memory)
(clea r_move_memo ry

)

(stop)

)

t)

(t nil)))

(defun do_move_forward_middle_legs ()

(cond ((and (all_middle_legs_lifted)
(move_done

)

(place_middle_legs)
(stop)

)

t)

((and (all_middle_legs_lifted)
(move)

)

t)

((and (lift_middle_legs)
(stop)

)

t)

(t nil)))

(defun move_forward_rear_legs_done ()

(cond ((and (all_rear_legs_lifted)
(all_rear_legs_placed)

- (clear_rear_lifted_memory)
(clea r_move_memory

)

(stop)

)

t)

(t nil))

)

robot444.1isp Thu Nov 29 11:34:42 1990 20

(defun do_move_forward_rear_legs ()

(cond ((and (all_rear_legs_lifted)
(rnove_done)
(place_rear_legs)
(stop)

)

t)

((and (all_rear_legs_lifted)
(move)

)

t)

((and (lift_rear_legs)
(stop)

)

t)

(t nil)))

(defun move ()

(cond ((asserta resume_movement)
t)

(t nil)))

(defun stop ()

(cond ((asserta stop_movement)
t)

(t nil))

)

(defun clear_move_memory ()

(cond ((retract move 'done)
t)

(t t)

(t nil)))

(defun move_done ()

(cond ((match move 'done)
t)

((and (at_tkm_limit)
(asserta move 'done))

t)

((and (at_stability_limit)
(asserta move 'done))

t)

(t nil)))

(defun back_middle_legs_done ()

(cond ((and (all_middle_legs_lifted)
(all_middle_legs^placed)
(clear_middle_lifted_memory)
(clear_move_memory)

)

robot444.1isp Thu Nov 29 11:34:42 1990 21

t)

(t nil))

)

(defun do_back_middle_legs ()

(cond ((and (all_middle_legs_lifted)
(place_middle_legs_back)

)

t)

((lift_middle_legs)
t)

(t nil))

)

(defun all_middle_legs_lifted ()

(cond ((match middle_legs ' lifted)
t)

((and (both_middle_legs_lifted)
(asserta middle_legs 'lifted))

t)

(t nil))

)

(defun all_middle_legs_placed ()

(cond ((both_middle_legs_placed)
t)

(t nil))

)

(defun clear_middle_lifted_memory ()

(cond ((retract middle_legs 'lifted)
t)

(t nil))

)

(defun place_middle_legs_back ()

(let (leg)
(cond ((and (setf leg (placable_middle_leg)

)

(asserta decision (list 'place_back leg)))
t)

(t t)

(t nil)))

)

(defun lift_middle_legs ()

(let (leg)
(cond ((and (setf leg (liftable_middle_leg)

)

(asserta decision (list 'lift leg)))
t)

(t t)

(t nil)))

)

(defun forward_front_legs_done ()

(cond ((and (all_front_legs_lifted)
(all_front_legs_placed)
(c le a r_f ront_l i fted_memory

)

(clear_move_memory)

)

t)

(t nil))

)

robot444.1isp Thu Nov 29 11:34:42 1990 22

(defun do_forward_front_legs ()

(cond ((and (all_front_legs_lifted)
(place_f ront_legs)

)

t)

((lift_front_legs)
t)

(t nil))

)

(defun all_front_legs_lifted ()

(cond ((match front_legs 'lifted)
t)

((and (both_front_legs_lifted)
(asserta front_legs 'lifted))

t)

(t nil))

)

(defun all_front_legs_placed ()

(cond ((both_front_legs_placed)
t)

(t nil)))

(defun clear_front_lifted_memory ()

(cond ((retract front_legs 'lifted)
t)

(t nil)))

(defun place_front_legs
(let (leg)

(cond ((and (setf leg (placable_front_leg))

(asserta decision (list 'place leg)))
t)

(t t)

(t nil))))

(defun lift_front_legs ()

(let (leg)
(cond ((and (setf leg (liftable_front_leg)

)

(asserta decision (list 'lift leg)))
t)

(t t)

(t nil))))

(defun forward_middle_legs_done ()

(cond ((and (all_middle_legs_lifted)
(all_middle_legs_placed)
(clear_middle_lifted_memory)
(clear_move_memory)

)

t)

(t nil))

)

robot444 .lisp Thu Nov 29 11:34:42 1990 23

(defun do_forward_middle_legs ()

(cond ((and (all_middle_legs_lifted)
(place_middle_legs))

t)

((lift_middle_legs)
t)

(t nil))

)

(defun place_middle_legs ()

(let (leg)
(cond ((and (setf leg (placable_middle_leg)

)

(asserta decision (list 'place leg)))
t)

(t t)

(t nil))))

(defun forward_rear_legs_done ()

(cond ((and (all_rear_legs_lif ted)
(all_rear_legs_placed)
(clear_rear_lifted_memory)
(clear_move_memory))

t)

(t nil))

)

(defun do_forward_rear_legs
(cond ((and (all_rear_legs_lifted)

(place_rear_legs)

)

t)

((lift_rear_legs)
t)

(t nil)))

(defun all_rear_legs_lifted ()

(cond ((match rear_legs 'lifted)
t)

((and (both_rear_legs_lifted)
(asserta rear_legs 'lifted))

t)

(t nil))

)

(defun all_rear_legs_placed ()

(cond ((both_rear_legs_placed)
t) ,

(t nil)))

(defun clear_rear_lifted_memory ()

(cond ((retract rear_legs 'lifted)
t)

(t nil))

)

robot444.1isp Thu Nov 29 11:34:42 1990 24

(defun place_rear_legs ()

(let (leg)

(cond ((and (setf leg (placable_rear_leg)

)

(asserta decision (list 'place leg)))
t)

(t t)

(t nil))))

(defun lift_rear_legs ()

(let (leg)

(cond ((and (setf leg (liftable_rear_leg)

)

(asserta decision (list 'lift leg)))
t)

(t t)

(t nil))))

(defun do_lift_middle_legs ()

(cond ((lift_middle_legs)
t)

(t nil)))

(defun place_legs_in_the_air_done ()

(cond ((all_legs_placed)
t)

(t nil)))

(defun do_place_legs_in_the_air (

)

(let (leg)
(cond ((and (setf leg (placable_leg)

)

(asserta decision (list 'place leg)))
t)

(t t)
,

(t nil))))

robot444 . lisp Thu Nov 29 11:34:42 1990 25

**

Plan Libraries

**

; body_plan :- speed_plan, tra jectory_plan

.

; speed_jplan :- retract (reduce_speed) , slow_down.
; speed_plan :- speed_up.

; speed_up :- X is speed_up_robot

.

; slow_down :- X is slow_down_robot

.

; tra jectory_plan :- stable_m, restore_tra jectory

.

; tra jectory_plan :- modify_tra jectory

.

; stable_m : - Condition is stable_p_m, Condition == t.

; restore_tra jectory :- X is restore_corranand.

; modify_tra jectory

generate_decision

generate_decision

generate_decision

.

- X is modify_command.

- retract (decision (A_leg, B_leg, A_decision)) ,

X is send_decision (A_leg, B_leg, A_decision) , fail
- retract (limit_leg (A_leg, A_decision)) ,

X is send_decision (A_leg,_, A_decision) , fail.

(defun body_plan()
(cond ((and (speed_plan)

(tra jectory_plan)

)

t)

(t nil)))

(defun speed_plan()
(cond ((and (retract reduce_speed)

(slow_down)

)

t)

((and (retract stop_movement)
(stop_motion)

)

t)

((and (retract resume_movement)
(resume_mot ion

)

(speed_up)

)

t)

((speed_up) t)

(t nil)))

(defun speed_up()
(cond (t (speed_up_robot) t)

(t nil)))

(defun slow down (

)

robot444 .lisp Thu Nov 29 11:34:42 1990 26

(cond (t (slow_down_robot) t)

(t nil))

)

(defun tra jectory_plan (

)

; OR
(cond ((and (stable_rn)

(restore_tra jectory))

t)

((modify_tra jectory) t)

(t nil))

)

(defun stable_m ()

. (cond ((stable_p_m) t)

(t nil))

)

(defun restore_tra jectory (

)

(cond (t (restore_command) t)

(t nil)))

(defun modify_tra jectory ()

(cond (t (modify_command) t)

(t nil))

)

(defun generate_decision (

)

(cond ((not (unify decision a-decision)

)

nil)

((and (unify decision a-decision)
(retract decision a-decision)
(print (list (second a-decision) (third decision) (first decision))

)

(send_decision (second a-decision) (thirdd decision) (first decision)
(generate_decision)

)

t)))

(defun generate_decision ()

(cond ((and decision
(not

(dolist (a-decision decision) (send-one-decision a-decision))

)

; dolist returns nil
(not (setf decision nil)

)

nil) ; this simulates fail
t)

((and limit_leg
(unify limit_leg decisionl)
(send-one-decision decisionl)
(retract limit_leg '?)

nil)
t)

(t t)

(t nil)))

(defun send-one-decision (decision)
; format (decision legl leg2)
; lisp function

(cond ((equal (first decision) 'exchange)
(send_decision (second decision) (third decision) (first decision))

)

(t

(send_dec*ision (second decision) nil (first decision))))

t)

robot444.1isp Thu Nov 29 11:34:42 1990 27

sensor-t .lisp Wed Nov 28 10:10:51 1990 1

;;; -*- Mode : Common-Lisp; Base: 10 -*-

sensor flavor definition

(def flavor sensor (state owner)

: initable-instance-variables)

contact-sensor flavor definition

(defflavor contact-sensor ()

(sensor)
: initable-instance-variables)

(defmethod (contact-sensor :initti)
(leg-name)

(setf state (send self :sensing)))

(defmethod (sensor :contact-p)
()

state)

(defmethod (sensor : sensing)

; simulation purpose
; graph-terrain is object.

(setf state
(let* ((leg-pos-wrt-body (send (send owner :executor)

:leg-pos-wrt-body)

)

(leg-pos-wrt -earth
(to-earth-transform (send owner :get-Hl) leg-pos-wrt-body)

)

(x-y-pos (list (first leg-pos-wrt-earth)
(second leg-pos-wrt-earth))

)

(leg-height (third leg-pos-wrt-earth))

)

(if (< leg-height (+ 0.07 (send graph-terrain :get-height x-y-pos)))
t

nil)))

)

stability-t2.1isp Thu Nov 29 11:35:01 1990 1

; ; ; -*- Mode : Common -Lisp; Base: 10 -*-

stability-calculator flavor definition

(defflavor stability-calculator (safety-margin
safety-ma rgin-p
large-safety-margin
large -safety-ma rgin-p
recovery-vector
recovery-vector-p
owner)

: initable-instance-variables)

(defmethod (stability-calculator :initti)

(setf safety-margin 0.4)
(setf safety-margin-p 0.2)
(setf large-safety-margin 0.5)
(setf large-safety-margin-p 0.4)
(setf recovery-vector ' (0 0)

)

(setf recovery-vector-p ' (0 0)))

(defmethod (stability-calculator :get-recovery-vector)

recovery-vector)

(defmethod (stability-calculator :get-recovery-vector-p)
()

recovery-vector-p)

(defmethod (stability-calculator : convert-to-recovery-vector)
(stability-vector)

(let ((sm (first stability-vector)

)

(vect (second stability-vector))

)

(cond ((< sm 0)

nil)

((< sm 0.1)
(magvect (/ 1 sm) vect))

(t

(magvect (/ 0.1 (* sm sm)) vect)))))

(defmethod (stability-calculator :more-stable)
(supporting-legs H legl leg2)

(let ((stabilityl (send self :calculate-stability
(cons legl supporting-legs) H)

)

(stability2 (send self :calculate-stability
(cons leg2 supporting-legs) H))

)

(if (> stabilityl stability2)
t

nil)))

stability-t2 . lisp Thu Nov 29 11:35:01 1990 2

(defmethod (stability-calculator :stable-m)
; predict H <= H10

(supporting-legs H)

(let ((stability-vector
(send self :get-stability supporting-legs H))

)

(cond (
(>= (first stability-vector)

large-safety-margin)
t)

(t

(if (>= (first stability-vector) safety-margin)
(setf recovery-vector

(send self :convert-to-recovery-vector stability-vector))
(setf recovery-vector ' (0 0)))

nil))))

(defmethod (stability-calculator :stable-p-m)
; present H <= HI

(supporting-p-legs H)

(let* ((stability-vector
(send self :get-stability supporting-p-legs H))

(st-margin (first stability-vector))

)

(cond (
(>= st-margin

large-safety-margin-p)
t)

(t

(setf recovery-vector-p
(send self : convert-to-recovery-vector stability-vector))

(if (< st-margin safety-margin-p)
(my-print (list 'st-p st-margin)))

nil)))

)

(defmethod (stability-calculator : stable)
(supporting-legs H10)

(if (>= (send self rcalculate-stability
supporting-legs H10)

safety-margin)
t

nil))

(defmethod (stability-calculator :stable-p)
(supporting-p-legs HI)

(if (>= (send self :calculate-stability
supporting-p-legs HI)

safety-margin-p)
t

nil))

(defmethod (stability-calculator :calculate-stability)
(supporting-legs H)

(first (send self :get-stability supporting-legs H)))

(defmethod (stability-calculator :get-stability)

stability-t2.1isp Thu Nov 29 11:35:01 1990

(supporting-legs K)

(if (>= (counting supporting-legs) 3)

(measure-distance (center-of -gravity H)

(convex-hull
(supporting-points
supporting-legs))

)

' (-100.0 (0 0))))

(defun convex-hull (points)
; returns clockwise-ordered
; point list of convex hull

(reverse
(convexl (car points) points

'(0 0) nil))

)

(defun convexl (current-point points previous-pt visited-pts)
(let* ((min-out-pt (min-out current-point previous-pt points)

)

(pos (position min-out-pt visited-pts :test #'equal)))
(cond (pos

(subseq visited-pts (+ pos 1))

)

(t (convexl min-out-pt
points
current -point
(cons min-out-pt visited-pts)))))

)

(defun min-out (current-pt pv-pt pts)
(let* ((min-pt nil)

(min-angle 100)
(angle 0)

)

(dolist (a-pt pts)
(cond ((not (equal a-pt current-pt))

(setf angle (turning-angle (vectsub current-pt pv-pt)
(vectsub a-pt current-pt)

)

(cond ((< angle min-angle)
(setf min-pt a-pt)
(setf min-angle angle)))))

)

min-pt)

)

(defun turning-angle (vect new-vect)
; 2 D space clock-wise turning angle
; Neither vect should not be zero vector.

(let* ((vectl-0 (list (first vect) (second vect) 0))

(vect2-0 (list (first new-vect) (second new-vect) 0))
(normal-vect (crossprod vectl-0 vect2-0))
(polarity (> (third normal-vect) 0))

(value (/ (dotprod vectl-0 vect2-0)
(* (magnitude vectl-0)

(magnitude vect2-0)))

)

(angle 0)

)

(if (>= value 1)

(setf value 1)

)

(if (<= value -1)

(setf value -1)

)

stability-t2.1isp Thu Nov 29 11:35:01 1990

(setf angle (acos value)

)

(if polarity
(- (* 2 pi) angle)
angle))

)

(defun center-of-gravity (H)

; center-of -body is represented wrt earth coordinate.
(let ((x (aref H 3)

)

(y (aref H 1 3))

)

(list x y))

)

; center-of-body can be changed in future.

(defun find-slope (first-point second-point)
(let ((del-x (- (car second-point) (car first-point))

)

(del-y (- (cadr second-point) (cadr first-point))))
(if (> (abs del-x) 0.0000001)

(/ del-y del-x) .

nil)))

(defun infinite-case (x a-line)
(list x

(+ (* (car a-line) x) (cadr a-line))))

(defun intersection-point (a-line b-line)
; Returns list (x y) . Line is list (slope crossing-point-of-axis)

(cond ((null (car a-line)) (infinite-case (cadr a-line) b-line)

)

((null (car b-line)) (infinite-case (cadr b-line) a-line)

)

(t (normal-case a-line b-line)))

)

(defun in-side-of-convex-hull (center-point first-points second-points)
(do* ((first-points first-points (cdr first-points)

)

(second-points second-points (cdr second-points)

)

(in-side-flag T)

)

((null first-points) in-side-flag)
(if (test-out-side (car first-points) center-point (car second-points)

)

(setf in-side-flag nil)))

)

(defun line (slope point)
(if slope '

(list slope (- (second point) (* slope (first point))))
(list slope (first point)))

)

; When slope is infinitive, return with x-axis crossing point instead of
; y-axis crossing point.

(defun measure-distance (center-point convex-points)

stability-t2 .lisp Thu Nov 29 11:35:01 1990 5

; convex-points is a list of points
; point is a list (x y z)

.

(let* ((first-points convex-points)
(second-points (append (cdr convex-points)

(list (car first-points))))

)

(if (in-side-of-convex-hull center-point first-points second-points)
(start -measure center-point first-points second-points)
' (-10.0 (0 0))))

)

; center-of-gravity is out-side of support pattern

(defun normal-case (a-line b-line)
(let* ((al (car a-line)

)

(bl (cadr a-line)

)

(a2 (car b-line)

)

(b2 (cadr b-line)

)

(x (/ (- bl b2) (- a2 al))

)

(y (+ (* al x) bl))

)

(list x y))

)

(defun point-distance (center-point first-point second-point)
; returns distance and vector between cross-pt and center-pt

(let* ((slopel (find-slope first-point second-point)

)

(slope2 (right-angle slopel)

)

(cross-pt (intersection-point (line slopel first-point)
(line slope2 center-point))

)

(del-vect (vectsub center-point cross-pt)

)

(distance (magnitude del-vect))

)

(list distance (list (first del-vect) (second del-vect) 0.0))))

(defun right-angle (slope)
(cond ((null slope) 0.0) ; infinitive input slope

((< (abs slope) 0.0000001) nil) ; zerop slope
(t (/ (- 1) slope)))

)

(defun start-measure (center-point first-points second-points)
(do* ((first-points first-points (cdr first-points))

(second-points second-points (cdr second-points)

)

(min-distance 10000.0 min-distance) ; infinte dummy number 10000.0
(min-direction nil) (dis-dir nil)

)

((null first-points) (list min-distance min-direction)

)

(setf dis-dir (point-distance center-point
(car first-points) (car second-points))

)

(cond ((< (first dis-dir) min-distance)
(setf min-distance (first dis-dir))
(setf min-direction (second dis-dir)))))

)

(defun supporting-points (legs)
(mapcar #' (lambda (leg)

(send leg : foothold))
legs)

)

stability-t2 . lisp Thu Nov 29 11:35:01 1990

(defun test-out-side (first-point second-point third-point)
(let* ((a (- (cadr first-point) (cadr third-point)))

(b (- (car third-point) (car first-point)))

(c (- (+ (* a (car third-point)) (* b (cadr third-point)))))
(decision (+ (* a (car second-point))

(cadr second-point))

(if (>= decision
T

nil))

)

(* b
c)))

0.0)

stop-body-t .lisp Thu Nov 29 11:35:14 1990 1

; ; -*- Mode : Common-Lisp; Base : 10 -*-

stop-body definition

(defflavor stop-body (stop-body-motion-flag)
(body)

: initable-instance-variables)

(defmethod (stop-body rafter :initti)

(setf stop-body-motion-flag nil)

)

(defmethod (stop-body : stop-body-motion)

(setf stop-body-motion-flag t)

)

(defmethod (stop-body : restore-body-motion)

(setf stop-body-motion-flag nil)

)

(defmethod (stop-body :calculate-motion)
(joystick-command legs)

(setf joy-command joystick-command)
(cond ((equal support-plane-clock 10)

(setf estimated-support -plane
(send support-plane-estimator :get-plane legs))

(setf support-plane-clock 0)))
(setf support-plane-clock (+ support -plane-clock 1)

)

(cond
((or stop-motion-flag stop-body-motion-flag (null modify-vector-p)

)

(send body-controller : control
'(0 0)

estimated-support-plane)

)

(modify-vector-p
(send body-controller : control

(vectadd joy-command (send self :get-modify-vector-p)

)

deceleration-factor estimated-support-plane)

)

(t

(control body-controller
(vectadd joy-command (send self :get-modify-vector))

deceleration-factor estimated-support-plane))))

support-plane-t .lisp Thu Nov 29 11:35:26 1990

;; -*- Mode :Common-Lisp; Base: 10 - x -

support-plane-estimator flavor definition

(defflavor support-plane-estimator (owner)

)

(defmethod (support-plane-estimator :initti)

)

(defmethod (support-plane-estimator :get-plane)
(legs)

(let* ((footholds-for-estimation (get-footholds legs)

)

(constants (get-constants footholds-for-estimation))

)

(make-plane-from-coef f icient constants))

)

support -plane-estimator
.
get-plane

**

(defun add-points (points)
; returns a list (number-of-points sum-of -points)

.

(do ((points points (cdr points)

)

(i (+ i 1))

(sum-vect ' (0 0))

)

((null points) (list i sum-vect))
(setf sum-vect (vectadd (car points) sum-vect))))

(defun average-point (points)
(let* ((num-s-sum- 'ect (add-points points))

(number-of-points (first num-& -sum-vect)

)

(sum-vect (second num-& -sum-vect))

)

(if (> number-of-points 0)

(magvect (/ 1 number-of-points) sum-vect)
(print "Error in finding average-point of estimate plane"))))

(defun get-aO (bar-point al)

(let* ((x-bar (first bar-point))
(z-bar (third bar-point))

)

(- z-bar (* al x-bar)))

)

support -plane-t .lisp Thu Nov 29 11:35:26 1990

(defun get-al (points bar-point common-denominator)
; returns al which is sum in this function.

(do* ((points points (cdr points))
(sum 0)

(x nil) (x-bar (first bar-point)

)

(z nil) (z-bar (third bar-point)))
((null points) (/ sum common-denominator))

(setf x (first (car points)))
(setf z (third (car points))

)

(setf sum (+ sum (* (- x x-bar) (- z z-bar))))))

(defun get-a2 (points bar-point common-denominator)
; returns a2 which is sum in this function,

(do* ((points points (cdr points)

)

(sum 0)

(x nil) (x-bar (first bar-point)

)

(y nil) (y-bar (second bar-point))

)

((null points) (/ sum common-denominator)

)

(setf x (first (car points))

)

(setf y (second (car points))

)

(setf sum (+ sum (* (- x x-bar) (- y y-bar))))))

(defun get-a3 (bar-point a2)
(let* ((x-bar (first bar-point))

(y-bar (second bar-point))

)

(- y-bar (* a2 x-bar)))

)

(defun get-a4 (points aO al a2 a3)
(let* ((number-of-points (counting points)

)

(yr (get-yr points a2 a3)

)

(zr (get-zr points aO al)

)

(yr-bar (get-yr-bar yr number-of-points)

)

(zr-bar (get-zr-bar zr number-of-points)))
(do ((yr yr (cdr yr)

)

(zr zr (cdr zr)

)

(numerator 0) (a-yr 0) (a-zr 0)

(denominator 0))

((null yr) (/ numerator denominator)

)

(setf a-yr (first yr))

(setf a-zr (first zr))

(setf numerator (+ numerator (* (- a-yr yr-bar) (- a-zr zr-bar))))
(setf denominator (+ denominator (* (- a-yr yr-bar) (- a-yr yr-bar)))))))

(defun get -common-denominator (points bar-point)
(do* ((points points (cdr points)

)

(sum 0)
'

(x nil)
(x-bar (first bar-point))

)

((null points) sum)
(setf x (first (car points))

)

(setf sum (+ sum (* (- x x-bar) (- x x-bar))))))

support-plane-t .lisp Thu Nov 29 11:35:26 1990 3

(defun get-constants (points)
(let* ((bar-point (average-point points))

(common-denominator (get-common-denominator points bar-point)

)

(al (get-al points bar-point common-denominator))

(a2 (get-a2 points bar-point common-denominator))

(aO (get-aO bar-point al)

)

(a3 (get-a3 bar-point a2))
(a4 (get-a4 points aO al a2 a3))

)

(list aO al a2 a3 a4))

)

(defun get-footholds (legs)
(do* ((legs legs (cdr legs)

)

(footholds nil)
(a-leg nil)

)

((null legs) footholds)
(setf a-leg (car legs)

)

(if (send a-leg : foothold)
(setf footholds (cons (send a-leg : foothold) footholds)))))

(defun get-yr (points a2 a3)

(do* ((points points (cdr points)

)

(yr nil)
(x nil)

(y nil))

((null points) (reverse yr)

)

(setf x (first (car points))

)

(setf y (second (car points))

)

(setf yr (cons (- y a2 (* a3 x)) yi)))

)

(defun get-yr-bar (yr number-of -points)
(do ((yr yr (cdr yr)

)

(yr-bar 0)

)

((null yr) (/ yr-bar number-of-points)

)

(setf yr-bar (+ yr-bar (first yr))))

)

(defun get-zr (points aO al)

(do* ((points points (cdr points)

)

(zr nil)
(x nil)
(z nil))

((null points) (reverse zr)

)

(setf x (first (car points))

)

(setf z (third (car point.!)))
(setf zr (cons (- z aO (* al x)) zr)))

)

(defun get-zr-bar (zr number-of-points)
(do ((zr zr (cdr zr)

)

(zr-bar 0)

)

((null zr) (/ zr-bar number-of-points))
(setf zr-bar (+ zr-bar (first zr))))

)

support -plane-t .lisp Thu Nov 29 11:35:26 1990

(defun make-plane-f rom-coef f icient (constants)
(let* ((aO (first constants))

(al (second constants)

)

(a2 (third constants)

)

(a3 (fourth constants))
(a4 (fifth constants))
(a (- (* a4 a3) al)

)

(b (- a4))

(c 1)

(d (- (* a2 a4) aO)

)

(unit-normal (normalize-vector (list a b c))

)

(dis (/ d (magnitude (list a b c))))

)

(list unit-normal dis))

)

terrain-regulator-t

.

lisp Thu Nov 29 11:35:38 1990

; ; ;
-*- Mode : Corr^r.or.-Lisp; Base: 10 -*-

.•••a**

terrain-regulator flavor definition

.•A**

(defflavor terrain-regulator (body-rotate-rate-x body-rotate-rate-y
body-trans-rate-z old-body- rot ate-rate-x
oId-body- rotate-rate-y old-body-trans-rate-z
gain min-height max-height
etal eta2 min-eta max-eta)

(regulator)
:init able-instance -variables)

(defmethod (terrain-regulator rinitti)

(setf gain 5)

(setf min-eta 0.0000001)
(setf max-eta 0.4363)
(setf min-height 4.4)
(setf max-height 5.4)
(setf etal min-eta)
(setf eta2 0.5236)

degree
2 5 degrees
4.4 feet
5.4 feet

degree
30 degree

(setf body-rotate-rate-x 0.0)
(setf body-rotate-rate-y 0.0)
(setf body-trans-rate-z 0.0)
(list body-rotate-rate-x body-rotate-rate-y body-trans-rate-z))

(defmethod (terrain-regulator : do-terrain-regulation)
(k-gamma-delta-height)

; k-gamma-delta-height is ((k.x k.y k.z) gamma delta-height),
(let* ((k (first k-gamma-delta-height))

(gamma (second k-gamma-delta-height))

(delta-height (third k-gamma-delta-height)

)

(body-rotate-rate-x-n (* gain (first k) gamma))
(body-rotate-rate-y-n (* gain (second k) gamma)

)

(body-trans-rate-z-n (* gain delta-height)))
(setf body-rotate-rate-x

(send self rlimitor
(send self : filter body-rotate-rate-x-n body-rotate-rate-x)
0.1))

(setf body-rotate-rate-y
(send self :limitor

(send self : filter body-rotate-rate-y-n body-rotate-rate-y)
0.1))

(setf body-trans-rate-z
(send self rlimitor

(send self : filter body-trans-rate-z-n body-trans-rate-z)
1)))

(list body-rotate-rate-x body-rotate-rate-y body-trans-rate-z)

)

(defmethod (terrain-regulator :eta-function)

terrain-regulator-t .lisp Thu Nov 29 11:35:38 1990

(eta)
(let ((slope (/ (- max-eta min-eta) (- eta2 etal))))

(+ min-eta (* slope (- eta etal)))))

(defmethod (terrain-regulator :get-k-gamma-by-slope)
(plane H)

(let* ((plane-rpt-body (plane-transform plane H)

)

(height (cadr plane-rpt-body)

)

(eta (arc-cos (third (car plane)))

)

(k-gamma-desired-height nil)

)

(setf k-gamma-desired-height
(cond ((< eta etal) (send self :low-slope plane))

((< eta eta2) (send self :mid-slope eta plane H)

)

(T (send self :high-slope plane H)))

)

(list (first k-gamma-desired-height)
(second k-gamma-desired-height)
(- (third k-gamma-desired-height) height)))

)

(defmethod (terrain-regulator : height-function)
(eta)

(let ((slope (/ (- max-height min-height) (- eta2 etal))))
(- max-height (* slope (- eta etal))))

)

(defmethod (terrain-regulator :high-slope)
(plane H)

(let* ((plane-unit-normal (first plane)

)

(a (first plane-unit-normal)

)

(b (second plane-unit-normal)

)

(m (sqrt (+ (* a a) (* b b)))

)

(desired-eta max-eta)
(desired-height min-height)
(desired-body-plane (list (list (* (/ a m) (sin desired-eta))

(* (/ b m) (sin desired-eta)

)

(cos desired-eta)) 0.0))
(desired-body-plane-in-body (plane-transform desired-body-plane H)

)

(unit-normal-body-plane (first desired-body-plane-in-body)

)

(al (first unit-normal-body-plane)

)

(bl (second unit-normal-body-plane)

)

(cl (third unit-normal-body-plane)

)

(ml (sqrt (+ (* al al) (* bl bl)))

)

(k (if (= ml 0)

(list 0)

(list (/ (- bl) ml) (/ al ml) 0)))
(gamma (arc-cos cl))

)

(list k gamma desired-height))

)

(defmethod (terrain-regulator :limitor)
(vel max-vel)

(if (>= (abs vel) max-vel)
(if (> vel 0)

max-vel
(- max-vel)

)

vel))

terrain-regulator-t .lisp Thu Nov 29 11:35:38 1990

(defmethod (terrain-regulator : low-slope)
(plane)

(let* ((unit-normal (first plane))
(a (first unit-normal)

)

(b (second unit-normal))

(c (third unit-normal)

)

(m (sqrt (+ (* a a) (* b b)))

)

(k.a nil)
(k.b nil)
(gamma (arc-cos c)

)

(desired-height max-height)

)

(if (= m 0.0)
(setf k.a 0.0 k.b 0.0)
(setf k.a (/ (- b) m) k.b (/ a m))

)

(list (list k.a k.b 0.0) gamma desired-height)))

(defmethod (terrain-regulator :mid-slope)
(eta plane H)

(let* ((plane-unit-normal (first plane)

)

(a (first plane-unit-normal)

)

(b (second plane-unit-normal)

)

(m (sqrt (+ (* a a) (* b b))))
(desired-eta (send self :eta-function eta))
(desired-height (send self rheight-function eta)

)

(desired-body-plane (list (list (* (/ a m) (sin desired-eta)

)

(* (/ b m) (sin desired-eta))
(cos desired-eta)) 0.0))

(desired-body-plane-in-body (plane-transform desired-body-plane H)

)

(unit-normal-body-plane (first desired-body-plane-in-body)

)

(al (first unit-normal-body-plane))
(bl (second unit-normal-body-plane)

)

(cl (third unit-normal-body-plane)

)

(ml (sqrt (+ (* al al) (* bl bl)))

)

(k (if (= ml 0)

(list 0)

(list (/ (- bl) ml) (/ al ml) 0)))
(gamma (arc-cos cl)))

(list k gamma desired-height)))

(defmethod (terrain-regulator : regulate)
(estimated-support -plane H)

(let ((k-gamma (send self :get-k-gamma-by-slope estimated-support -plane H))

)

(send self :do-terrain-regulation k-gamma))

)

(defmethod (terrain-regulator : restore)

(setf body-rotate-rate-x old-body-rotate-rate-x)
(setf body-rotate-rate-y 'old-body-rotate-rate-y)
(setf body-trans-rate-z old-body-trans-rate-z)
(list body-rotate-rate-x body-rotate-rate-y body-trans-rate-z)

)

(defmethod (terrain-regulator :save)

(setf old-body-rotate-rate-x body-rotate-rate-x)

terrain-regulator-t .lisp Thu Nov 29 11:35:38 1990

(setf old-body-rotate-rate-y body-rotate-rate-y)
(setf old-body-trans-rate-z body-trans-rate-z)
)

test-overlap-leg-t-441 . lisp Thu Nov 29 11:35:55 1990

;; -*- Mode : Common-Lisp; Base: 10 -*-

test-overlap-leg definition

(defflavor test-overlap-leg ()

(overlap-leg)
)

(defmethod (test-overlap-leg : change-to-back-foothold)
()

(setf foothold (first foothold-list))
(setf tkm (first tkm-list))

)

test-overlap-robot-t-442 . lisp Thu Nov 29 11:36:10 1990

; ; -*- Mode : Common-Lisp; Base: 10 -*-

test-overlap-robot definition

(defflavor test-overlap-robot ()

(overlap- robot)
)

(defmethod (tes

(send graph-a
(setf vision-
(send vision-
(setf joystic
(send joystic
(empty-queue
(setf lift-fl
(let ((H))

(setf body
(setf H (se
(setf legs

t-overlap-robot rinitti)

sv :init-data)
system (make-instance 'ditch-vision-system :owner self))
system :initti)
k (make-instance ' joystick)

)

k :reset)
lift-queue)
ag t)

:owner self)

)

(make-instance 'body
nd body :initti))
(list

(make-instance 'test
(make-instance 'test
(make-instance 'test
(make-instance 'test
(make-instance 'test
(make-instance 'test
))

(mapcar #' (lambda (a-leg) (send a-leg :initti H)) legs))

:-overlap-leg
:-overlap-leg
:-overlap-leg
-overlap-leg
;-overlap-leg
;-overlap-leg

:name
:name
:name
:name
:name
:name

'legl
'leg2
'leg3
'leg4
'leg5
'leg6

rowner self)
:owner self)
rowner self)
: owner self)
: owner self)
:owner self)

(defmethod (test-overlap-robot :send-decision)
(legl leg2 a-decisicn)

(cond ((equal a-decision 'exchange)
(send legl : send-decision a-decision)
(send leg2 : send-decision 'place)
(send legl :send-exchange leg2)

)

((equal a-decision 'place_back)
(send legl : change-to-back-foothold)
(send legl : send-decision 'place))

(t

(send legl : send-decision a-decision))))

:t,km))

:tkm)))

(defmethod (test-overlap-robot
(legl leg2)

(let ((tkml (send legl
(tkm2 (send leg2

(cond ((null tkm2)
t)

((null tkml)
nil)

((> tkml
tkm2)))))

:has-more-tkm)

test-overlap-robot-t-442 .lisp Thu Nov 29 11:36:10 1990

(defmethod (test-overlap-robot : liftable-leg)
(leg)

(cond ((member leg lift-able-legs :test #'equal)
leg)

(t nil)))

(defmethod (test-overlap-robot :placable-leg)
(leg)

(cond ((and (member leg place-able-legs :test #'equal)
(send leg :has-foothold-p))

leg)
(t nil)))

(defmethod (test-overlap-robot : liftable-front-leg)

(cond ((send self : liftable-leg (first legs)))
((send self :liftable-leg (second legs)))
(t nil)))

(defmethod (test-overlap-robot :placable-front-leg)

(cond ((send self :placable-leg (first legs)))
((send self :placable-leg (second legs)))
(t nil)))

(defmethod (test-overlap-robot :both-front-legs-placed)

; If one of front legs has not foothold, then this will fail!
(cond ((and (member (first legs) supporting-p-legs :test #'equal)

(member (second legs) supporting-p-legs :test #'equal))
t)

(t nil)))

(defmethod (test-overlap-robot :both-front-legs-lifted)

(cond ((and (not (member (first legs) supporting-p-legs :test #'equal))
(not (member (second legs) supporting-p-legs :test f'equal)))

t)

(t nil)))

(defmethod (test-overlap-robot : liftable-rear-leg)

(cond ((send self :liftable-leg (fifth legs)))
((send self : liftable-leg (sixth legs)))
(t nil)))

test-overlap-robot-t-442.1isp Thu Nov 29 11:36:10 1990

(defmethod (test-overlap-robot :placable-rear-leg)

(cond ((send self :placable-leg (fifth legs)))
((send self :placable-leg (sixth legs)))
(t nil))

)

(defmethod (test-overlap-robot :both-rear-legs-placed)

; If one of rear legs has not foothold, then this will fail!
(cond ((and (member (fifth legs) supporting-p-legs :test t'equal)

(member (sixth legs) supporting-p-legs :test #'equal))
t)

(t nil)))

(defmethod (test-overlap-robot :both-rear-legs-lifted)

(cond ((and (not (member (fifth legs) supporting-p-legs :test #'equal))
(not (member (sixth legs) supporting-p-legs :test #'equal)))

t)

(t nil))

)

(defmethod (test-overlap-robot : liftable-middle-leg)

(cond ((send self :liftable-leg (third legs)))
((send self : liftable-leg (fourth legs)))
(t nil)))

(defmethod (test-overlap-robot : placable-middle-leg)

(cond ((send self :placable-leg (third legs))

)

((send self :placable-leg (fourth legs)))
(t nil)))

(defmethod (test-overlap-robot : both-middle-legs -placed)

; If one of middle legs has not foothold, then this will fail!
(cond ((and (member (third legs) supporting-p-legs :test #'equal)

(member (fourth legs) supporting-p-legs :test #'equal))
t)

(t nil)))

(defmethod (test-overlap-robot :both-middle-legs-lifted)

(cond ((and (not (member' (third legs) supporting-p-legs .-test #'equal))
(not (member (fourth legs) supporting-p-legs :test #'equal)))

t)

(t nil))

)

(defmethod (test-overlap-robot : one-placable-leg)

test-overlap-robot-t-442.1isp Thu Nov 29 11:36:10 1990

(cond ((send self :placable-front-leg)

)

((send self :placable-middle-leg)

)

((send self :placable-rear-leg)

)

(t nil)))

(defmethod (test-overlap-robot : all-legs-placed)

(cond ((and (send self :both-front-legs-placed)
(send self :both-middle-legs-placed)
(send self :both-rear-legs-placed))

t)

(t nil))

)

(defmethod (test-overlap-robot :at-ditch-area)

(send vision-system :on-ditch-area
(send self :get-H10))

)

**

; Prolog Interface Functions

**

(defun liftable_front_leg ()

(send asv :liftable-front-leg)

)

(defun placable_front_leg
(send asv :placable-f ront-leg)

)

(defun both_front_legs_placed ()

(send asv :both-front-legs-placed)

)

(defun both_front_legs_lifted ()

(send asv :both-front-legs-lifted)

)

(defun liftable_rear_leg ()

(send asv :liftable-rear-rleg))

(defun placable_rear_leg ()

(send asv :placable-rear-leg)

)

(defun both_rear_legs_placed ()

(send asv :both-rear-legs-placed)

)

test-overlap-robot-t-442 .lisp Thu Nov 29 11:36:10 1990

(defun both_rear_legs_lifted ()

(send asv :both-rear-legs-lifted)

)

(defun liftable_middle_leg ()

(send asv : liftable-middle-leg)

)

(defun placable_middle_leg ()

(send asv :placable-middle-leg)

)

(defun both_middle_legs_placed ()

(send asv :both-middle-legs-placed))

(defun both_middle_legs_lifted ()

(send asv :both-middle-legs-lifted))

(defun placable_leg ()

(send asv :one-placable-leg)

)

(defun all_legs_placed ()

(send asv :all-legs-placed)

)

(defun at_ditch_area ()

(send asv :at-ditch-area)

)

tkm-t . lisp Thu Nov 29 11:36:23 1990

; ;
-*- Mode : Common-Lisp; Base: 10 -*-

tkm-calculator flavor definition

************************ * * *****************************

(def flavor tkm-calculator (working-volume owner)

: initable-instance-variables)

(defmethod (tkm-calculato
(leg-name)

(cond ((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

)

)

initti)

'legl)
lume
) 3.316) (d 0) -8 0832) (

) 5.7313) ((1 0) -3 4167) (

'leg2)
lume
) 3.316) (d 0) -8 0832) (

) 5.7313) ((1 0) -3 .4167) (

'leg3)
lume
) 3.316) (d 0) -2 .2915) (

) 5.7313) (d 0) 2 .2915) (

'leg4)
lume
) 3.316) (<1 0) -2 .2915) (

) 5.7313) ((1 0) 2 .2915) (

'leg5)
lume
) 3.316) (<1 0) 3 .3332) (

) 5.7313) (d 0) 7 .8332) (

'leg6)
lume
) 3.316) (d 0) 3 .3332) (

) 5.7313) (d 0) 7 .8332) (

(0 0.9397 0.3420) -2.569))
(0 0.9397 -0.3420) -2.569)))))

(0 0.9397 0.3420) 2.569))
(0 0.9397 -0.3420) 2.569)))))

(0 0.9397 0.3420) -2.569)

)

(0 0.9397 -0.3420) -2.569)))))

(0 0.9397 0.3420) 2.569))
(0 0.9397 -0.3420) 2.569)))))

(0 0.9397 0.3420) -2.569))
(0 0.9397 -0.3420) -2.569)))))

(0 0.9397 0.3420) 2.569))
(0 0.9397 -0.3420) 2.569)))))

(defmethod (tkm-calculator :find-tkm)
(a-foothold body-trans-rate body-rotate-rate)

; a-foothold is based on body coordinate
; returns tkm

(let* ((leg-vel-rpt-body
(get -leg-velocity
a-foothold body-trans-rate body-rotate-rate)))

(get-tkm a-foothold leg-vel-rpt-body working-volume))

)

(defun get-distance (planes velocity leg-position)
; global function : plane-distance
; before start, make one plane list

(do ((planes (append (first planes) (second planes)) (cdr planes)

)

(a-tkm nil)
(min-tkm 10000)

)

((null planes) min-tkm)
(setf a-tkm (plane-distance (car planes) velocity leg-position)

)

tkm-t.lisp Thu Nov 29 11:36:23 1990

(if a-tkm
(if (and (> a-tlcm 0) (> min-tkm a-tkm))

(setf min-tkm a-tkm))))

)

(defun get-leg-velocity (pos-rpt-body body-trans-rate body-rotate-rate)
; returns leg-velocity-wrt-body

= -
(body-trans-rate + body-rotate-rate X pos-rpt-body)

(vectsub '(0 0)

(vectadd body-trans-rate
(crossprod body-rotate-rate pos-rpt-body)))

)

(defun get-tkm (leg-pos-rpt-body velocity working-volume)
; global function : magnitude
; outside w.v returns nil. If speed is near 0, then returns 1000.0.

(if (in-side-volume leg-pos-rpt-body working-volume)
(let ((speed (magnitude velocity))

)

(if (< speed 1/1000)
1000.0
(/ (get-distance working-volume velocity leg-pos-rpt-body) speed)))

nil))

(defun in-side-volume (position planes)
; planes ((up front left) (back right bottom)

)

(let* ((positive-planes (first planes)

)

(negative-planes (second planes)

)

(inside-flag T)

)

(dolist (a-plane positive-planes)
(if (>= (plane-normal-distance a-plane position) 0)

(setf inside-flag nil))

)

(dolist (a-plane negative-planes)
(if (<= (plane-normal-distance a-plane position) 0)

(setf inside-flag nil))

)

inside-flag)

)

user-interface-t2.1isp Thu Nov 29 11:36:49 1990 1

; ; ;
-*- Mode : Common-Lisp ; Base: 10 -*-

.**************************•**

user interface routines

(defvar *old-terrain-f ile-name*)
(defvar *new-terrain-file-name*)
(defvar *terrain-slope-type*)
(defvar *terrain-slope-data*)
(defvar *terrain-slope-angle*)
(defvar *terrain-type*)
(defvar *obstacle-ratio*)
(defvar *random-seed*)
(defvar *ok-flag*)
(defvar *screen*)
(defvar *screen-width*)
(defvar *screen-height*)
(defvar *new-lisp-listener*)
(defvar *ditch-width*)
(defvar *ditch-location*)
(defvar *ditch-type*)

(defun initialize-menu-variables
(setf *old-terrain-file-name* nil)
(setf *new-terrain-file-name* nil)
(setf *terrain-slope-type* 'default)
(setf *terrain-slope-data* nil)
(setf *terrain-slope-angle* 0)

(setf *terrain-type* 'random)
(setf *obstacle-ratio* '25)

(setf *random-seed* '125)
(setf *ok-flag* t)

(setf *ditch-width* 6)

(setf *ditch-location* 21)
(setf *ditch-type* 'no-ditch))

(defun get-old-terrain-file-name ()

(let ((file-names
(mapcar #' (lambda (file)

(list (file-namestring file) ' documentation "Use an old terrain")
(directory "robot : kwak . robot .terrain-data; *.*"))))

(if file-names
(w:menu-choose (cons '("new-terrain" :value nil : documentation "Create a new ter

in")
file-names)

: label "Select terrain"
: superior *new-lisp-listener*)

(w:menu-choose '
(("new-terrain" :value nil : documentation "Create a new terrain"

: label "Select terrain"
: superior *new-lisp-listener*)))

)

i

(defun get-terrain-slope-type ()

(w:choose-variable-values
'

((*terrain-slope-type* :menu-alist (("Default" :value default)
("Single Angle" : value single-angle)
("Manual" : value manual)))

)

user-interface-t2 .lisp Thu Nov 29 11:36:49 1990

: label "Choose terrain slope profile"
:superior *new-lisp-listener*)

terrain-slope-type)

(defun get-terrain-slope-angle (

)

(w : choose-variable -values
'

((*terrain-slope-angle* : documentation "Input terrain slope angle"
: constraint (lambda (dl d2 d3 value)

(cond ((> (abs value) 30) "Too steep angle"]
(t nil)))))

: label "Input terrain slope angle'
: superior *new-lisp-listener*)

terrain-slope-angle)

(defun get-terrain-slope-data ()

(setf *terrain-slope-data* '((15 0) (30 2)))
(wr choose-variable-values

'
((*terrain-slope-data* : documentation "Input format ((xl hi) (x2 h2) ...)"

:constraint (lambda (dl c±2 d3 value)
(cond ((null value) "Please input slope")

(t nil)))))
: label "Input slope data"
: superior *new-lisp-listener*)

terrain-slope-data)

(defun get-terrain-obstacle-type ()

(w : choose-variable-values
'

((*terrain-type* :menu-alist (("Random" rvalue random)
("Manual" rvalue manual)))

)

: label "Choose type of terrain"
: superior *new-lisp-listener*)

terr a in-type)

(defun get-terrain-random-data ()

(w: choose-variable-values
'

((*obstacle-ratio* :constraint (lambda (dl d2 d3 value)
(cond ((> value 90) "Too Big")

((< value 0) "Error")
(t nil))))

(* random-seed* rfixnum))
: superior *new-lisp-listener*)

(list *obstacle-ratio* *random-seed*)

)

t

(defun get-ditch-type ()

(w: choose-variable-values
'

((*ditch-type* :menu-alist (("Add Ditch" rvalue add-ditch)
("No Ditch" rvalue no-ditch))))

r label "Choose ditch option"
: superior *new-lisp-listener*)

ditch-type)

user-interface-t2 .lisp Thu Nov 29 11:36:49 1990

(defun get-ditch-width-location ()

(w: choose-variable-values
'

((*ditch-width* :constraint (lambda (dl d2 d3 value)
(cond ((> value 7) "Too Big")

((< value 3) "Too Small")
(t nil)))

)

(*ditch-location* :constraint (lambda (dl d2 d3 value)
(cond ((> value 32) "Too Big")

((< value 15) "Too Small")
(t nil)))))

:superior *new-lisp-listener*)
(list *ditch-width* *ditch-location*)

)

(defun user-ok()
(setf *ok-flag* t)

(w: choose-variable -value

s

'((*ok-flag* rboolean))
: label "Do you like this terrain?"
: superior *new-lisp-listener*)

ok-flag)

(defun user-file-name
(w: choose-variable-values

'
((*new-terrain-file-name* :string))

: label "Please provide the Dutput file name
: superior *new-lisp-listener*)

new-terrain- file-name)

(defun user-save ()

(setf *ok-flag* nil)
(w: choose-variable-values
'((*ok-flag* "Save-p" rboolean))
: label "Do you want to save this terrain?"
rsuperior *new-lisp-listener*)

ok-flag)

(defun move-and-shape-lisp-listener (

)

(setf *screen* (send *terminal-io* rsuperior))
(setf *screen-width* (send *screen* rwidth)

)

(setf *screen-height* (send *screen* rheight)

)

(setf *new-lisp-listener* (make-instance 'w: lisp-listener)

)

(send *new-lisp-listener^ : refresh)
(send *new-lisp-listener* :set-size

(truncate (* 1.0 *screen-width*)) (truncate (* 0.2 *screen-height*))

)

(send *new-lisp-listener* : set-position
(truncate (* 0.8 *screen-height*))

)

(send *new-lisp-listener* :set-more-p nil)
(send *new-lisp-listener* : select))

user-interface-t2 .lisp Thu Nov 29 11:36:49 1990

(defun restore-lisp-listener ()

(send *new-lisp-listener* :kill))

(defun my-print (x)

(print x *new-lisp-listener*))

(defun my-read-char-no-hang ()

(read-char-no-hang *new-lisp-listener*)

)

vehicle .data Thu Nov 29 13:10:31 1990

28 13
(1 6.625 0.0 3.0)
(2 6.625 0.0 1.08)
(3 6.625 -2.0 1.08)
(4 -6.625 -2.0 1.08)
(5 -6.625 2.0 1.08)
(6 6.625 2.0 1.08)
(7 6.625 0.9 -3.1)
(8 6.625 -0.9 -3.1)
(9 -6.625 -0.9 -3.1)
(10 -6.625 0.9 -3.1)
(11 0.0 0.0 0.0)
(12 0.0 0.0 0.0)
(13 0.0 0.0 0.0)
(14 0.0 0.0 0.0)
(15 0.0 0.0 0.0)
(16 0.0 0.0 0.0)
(17 0.0 0.0 0.0)
(18 0.0 0.0 0.0)
(19 0.0 0.0 0.0)
(20 0.0 0.0 0.0)
(21 0.0 0.0 0.0)
(22 0.0 0.0 0.0)
(23 0.0 0.0 0.0)
(24 0.0 0.0 0.0)
(25 0.0 0.0 0.0)
(26 0.0 0.0 0.0)
(27 0.0 0.0 0.0)
(28 0.0 0.0 0.0)
(2 1 2)

(5 3 4 5 6 3)

(2 6 7)

(2 5 10)

(2 4 9)

(2 3 8)

(5 8 7 10 9 8)

(3 11 12 13)
(3 14 15 16)

(3 17 18 19)

(3 20 21 22)

(3 23 24 25)
(3 26 27 28)

vision-t.lisp Thu Nov 29 11:37:16 1990 1

; ; ;
-*- Mode : Common-Lisp; Base: 10 -*-

•A**
r

i

vision-system definition

(defflavor vision-system (owner)

: initable-instance-variables)

(defmethod (vision-system :initti)

)

(defmethod (vision-system : scanning)

)

(defmethod (vision-system :permitted-cell)
(t-cell)

(send graph-terrain :permitted-cell t-cell)

)

(defmethod (vision-system :terrain-point)
(t-cell)

(send graph-terrain : terrain-point t-cell)

)

Distribution List

Defense Technical Information Center

Cameron Station

Alexandria, VA 22314

Library, Code 0142
Naval Postgraduate School

Monterey, CA 93943

Center for Naval Analyses

4401 Ford Avenue
Alexandria, Virginia 22302-0268

Chief of Naval Operations

Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

Director of Research Administration

Code 012
Naval Postgraduate School
Monterey, CA 93943

Department Chairman, Code CSMz
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Professor Neil C. Rowe, Code CSRp
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

Professor Michael J. Zyda, Code CSZk
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

Professor Yuh-Jeng Lee, Code CSLe
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

Professor Se-Hung Kwak, Code CSKw
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

Professor Kenneth J. Waldron
Department of Mechanical Engineering

Ohio State University

206 West 18th Avenue
Columbus, Ohio 43210

Professor D.E. Orin
Department of Electrical Engineering

Ohio State University

2015 Neil Avenue
Columbus, Ohio 43210

Col. Eric Mettala

DARPA/ISTO
1400 Wilson Boulevard
Arlington, Virginia 22209

Doctor Robert Rosenfeld

DARPA/AUSTO
1555 Wilson Boulevard, Suite 600
Arlington, Virginia 22209

DUDLEY KNOX LIBRARY

3 2768 00329703 7

