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Abstract-Unmanned vehicles can operate where humans cannot or do 
not want to go. The last decade’s advances in computer processor 
capability and speed, component miniaturization, signal processing, and 
high-energy density power supplies have made remotely operated vehicles 
(ROV’s) and, to some extent, autonomous vehicles, a reality. In an effort 
to further advance this technology, the Naval Postgraduate School (NPS) 
is constructing a small autonomous underwater vehicle (AUY) with an 
onboard mission control computer. The mission controller software for 
this vehicle is a knowledge-based artificial intelligence (AI) system 
requiring thorough analysis and testing before the AUV is operational. 
We discuss how rapid prototyping of this software has been demonstrated 
by developing controller code on a LISP machine and using an Ethernet 
link with a graphics workstation to simulate the controller’s environment. 
Additionally, we discuss the development of a new testing simulator using 
a KEE expert system shell that is designed to examine AUV controller 
subsystems and vehicle models before integrating them with the full AUV 
for its test environment missions. This AUV simulator utilizes an 
interactive Mission Planning Control Console and is fully autonomous 
once initial parameters are selected. 

I. INTRODUCTION 

Autonomous vehicles can go where humans cannot or do not want 
to go. Autonomous vehicles are capable of receiving initial input, 
moving to another location, executing a mission, and returning with 
the requested results or data. In addition to performing labor intensive 
or repetitive tasks, these vehicles can perform their jobs faster and 
with greater precision than humans, and can also proceed into hostile 
or contaminated environments. 

For the last 30 years, remotely operated vehicles (ROV’s) have 
attempted to fill these needs and the last decade’s tremendous 
advances in computer and systems engineering, as well as the rapid 
deployment of ROV’s, here validated vehicle and sensor designs. 
AUV design is not so advanced. While ROV’s can cheaply use rapid 
prototyping and testing techniques, AUV’s are still quite complicated 
and costly. The operational testing process subjects these expensive 
vehicles to harsh and unpredictable environments in which the 
logistics are difficult and some AUV losses are unavoidable. While 
there is no substitute for operational experience, most of the AUV’s 
engineering problems have been solved while learning how to operate 
ROV’s. The last step is the development of high-level mission 
planners that can be simply and cheaply tested without expensive 
logistics and unaffordable losses. 

One solution to this problem is through the use of three- 
dimensional visual simulation. Through the use of vehicle simulators, 
AI mission planners can be developed in the laboratory and can 
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receive data inputs from artificial (computer-generated) sources. The 
planner’s outputs can be used to drive a simulator whose actions can 
be observed and interpreted to evaluate the effectiveness of the 
planner without having to risk the vehicle. The same powerful 
computer systems that have revived AUV research can thus be used 
for rapid AUV prototyping and low-risk initial testing. 

The U.S. Navy has identified a number of tasks that can be 
performed by AUV’s and the Defense Advanced Research Projects 
Agency (DARPA) strongly supports AUV research [l], [2]. The 
Naval Postgraduate School (NPS) is developing an experimental 
AUV to support research relating to these military requirements. Part 
of this project is the design of three-dimensional visual simulators that 
will reduce the time and expense of implementing various AUV 
subsystems, while also permitting efforts to proceed along several 
simultaneous approaches. Previous simulator research at the NPS [3] 
has shown that graphics workstations provide a useful way to 
simulate a realistic external environment for conducting AUV 
operations, and more recently, a new simulator has been developed to 
generate a “laboratory environment” for testing several AUV 
planning, navigation, and control subsystems [4]. This approach 
permits the prompt development and thorough testing of AI software 
for the NPS AUV, the examination of different AUV hydrodynamic 
models, the testing of maneuvering subsystems in conjuction with 
different sensor configurations, as well as the prototyping and 
development of AUV Mission Planning Control Stations for possible 
use on AUV launching platforms. These proven subsystems are being 
integrated with the AUV mission planner to develop full-scale 
proposed missions before operational testing of the actual vehicle. 

11. NPS AUV SIMULATOR DEVELOPMENT HISTORY 

A .  Vehicle Characteristics 

The NPS AUV is modeled after the Swimmer Delivery Vehicle 
(SDV) used for the delivery and extraction of the U.S. Navy Special 
Warfare Teams. The actual NPS Model 2 AUV resembles the SDV 
and the simulator’s vehicle dynamics have been scaled to the 
dimensions of the AUV currently under construction. 

The simulator’s controller carries out AUV operations by directing 
its output to either of two three-dimensional visual representation 
systems. NPS AUV-Siml is a simplified vehicle which models 
complex AUV missions in the open-ocean environment. NPS AUV- 
Sim2 uses a more sophisticated SDV hydrodynamic model in a small 
“test pool” to evaluate various AUV configurations and to develop 
the actual control algorithms that are being used by the NPS Model 2 
AUV . 

1) NPS A UV-Siml: The first three-dimensional vehicle simula- 
tion system [3] permits mission execution without requiring a detailed 
implementation of AUV dynamics. The simulator represents a small 
manned vehicle with a control panel and a “through the periscope” 
display similar to that of the U.S. Navy’s Sturgeon class attack 
submarine. The vehicle has a single screw and rudder and maintains 
continuous neutral buoyancy. Aft-mounted sternplanes impart a hull 
pitch angle for large depth changes, while forward-mounted bow- 
planes provide more precise depth control without generating a pitch 
angle. Although operators can manually operate the AUV, the 
vehicle is normally under autopilot control. 

The NPS AUV-Siml dynamics model consists of a simple point- 
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mass approximation governed by one acceleration equation, two rate 
equations, and one attitude equation. The vehicle’s location and 
orientation is described by applying these equations at a 10-Hz rate 
and by setting the autopilot’s control surface positions according to 
depth or course error. AUV speed is chosen by the autopilot and is 
limited by battery charge or the onset of cavitation. Acceleration is 
fixed at 1 kn/s2, while depth and azimuth rates depend on a 
combination of speed and control surface angle. The vehicle’s pitch 
angle is assigned a steady-state value determined by the AUV’s speed 
and sternplane angle. 

Although the AUV displays rigid body behavior and inertial delay, 
no attempt was made to model actual submarine dynamics, since 
these would have little impact on the large-scale decisions imple- 
mented by the mission controller. This model is a simple and 
effective way to display the actions and results generated by mission 
execution algorithms. 

2) NPS A UV-Sim2: The second simulation system is based on the 
Swimmer Delivery Vehicle’s dynamics and preliminary NPS model 
hydrodynamic test data [5]. The hull shape is a flattened cylinder with 
a rounded bow and a tapered stern; the AUV maneuvers with bow 
planes, stern planes, twin rudders, and twin screws. The dynamics 
model uses a vehicle mass of 12 OOO lbs at neutral buoyancy with a 
length of 17 ft, a beam of 5 ft, and a height of 2.5 ft (the visual 
representation has been scaled proportionately to a length of 5 ft). 
The NPS Model 2 AUV (still under construction) is being equipped 
with two vertical and two horizontal thrusters; the simulator image 
shows these thrusters (see Figs. 1 and 2 for a simulator view of NPS 
AUV Model 2). 

The AUV’s position, orientation, and velocity are determined by 
calculating hydrodynamic drag forces and Euler angle rates and then 
updating these parameters at a 30-Hz rate. The AUV is displayed 
from an external point of view instead of the earlier “through the 
periscope” perspective. The simulation program is a considerable 
inprovement over the NPS AUV Siml model, since the AUV exhibits 
realistic acceleration and inertial behavior. 

NPS AUV-Siml [6] was designed to evaluate AUV hydrodynamic 
coefficients and examine the resulting vehicle dynamics under a 
variety of speeds and pitch angles. The simulator relies on mouse- 
indicated manipulation of the vehicle’s control surfaces and its speed; 
there is no autopilot controller. 

The NPS AUV-Sim2 system uses a simple autopilot depth or 
course-error calculation to set control surface positions for maneu- 

Fig. 2.  NPS AUV-SIM2. 

vers. Autopilot orders create control surface angles that in turn act on 
the AUV hydrodynamic model to generate changes in depth or 
course. Although this first-order controller produces abrupt and 
nonlinear control surface behavior, the NPS Model 2 AUV design 
team is developing a more advanced control system. The simulator’s 
modular code structure allows the advanced controller algorithm to 
be easily installed between the autopilot and hydrodynamic model for 
testing and analysis. 

B. Environment 

The ocean environment for NPS AUV-Siml is described in detail 
in [3]. The simulation begins with the AUV at periscope depth in a 
sector of water 5 nmi on a side. The seafloor of this model is a 
submerged cone with an exposed island (the cone’s vertex) near the 
center of the sector. In addition to the island and its shoals, the AUV 
must also contend with a number of surface contacts-military 
vessels, merchant ships, and buoys. The large body of water and its 
congested environment provide a realistic test of the AUV’s mission 
control and guidance subsystems. 

The water environment for NPS AUV-Sim2 is modeled after a 
proposed test site for the actual vehicle. The simulation displays a 
“swimming pool” (120 ft by 60 ft by 8 f t  deep) containing a number 
of submerged cylindrical obstacles. The simulator’s AUV and test 
pool are scaled to the actual sizes of the NPS AUV and its test site, 
although the hydrodynamic model is not yet scaled to this environ- 
ment. The test pool is a much simpler environment than the ocean 
environment of NPS AUV-Siml and is intended to give the AUV 
design team a realistic way to test various algorithms for mission 
control, guidance, and vehicle control before integrating the software 
with the actual AUV. 

C. Missions 

The simulator’s mission control software is divided into four main 
categories: Charting, reconnaissance, surveillance, and covert pay- 
load delivery. In each category, the mission controller executes the 
algorithms required to maneuver the AUV to the desired location, 
perform its required tasks, and return the vehicle to its starting 
position. Additional algorithms handle other tasks or emergencies 
such as path planning, uncharted shallow water, or close contacts. 

Lesser “missions” test the NPS Model 2 AUV’s guidance and 
control subsystems. These tasks, subsets of the larger missions, 
analyze the vehicle’s ability to transit and navigate in the test pool. 
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Fig. 3 .  Control system architecture. 

This starts with simple maneuvers such as crossing the pool or 
circumnavigating it and builds into more complicated sequences 
requiring the vehicle to execute depth changes, to pass through and/or 
hover at specific coordinates, and to maneuver for collision avoid- 
ance. 

D. Control System Architecture and Languages 

The overall software architecture implemented for the NPS Model 
2 AUV is shown in Fig. 3. The top level is the Mission Planning 
level, which is implemented with rules and a knowledge-base using 
the KEE (Knowledge Engineering Environment) software develop- 
ment shell. The user interacts directly with this level by selecting a 
mission and then supplying additional information via prompts. Once 
this information has been acquired, this level automatically plans a 
mission, which includes a detailed path to a goal. As a path i s  
planned, all the known obstacles and environment data are consid- 
ered. The mission is passed down to the lower level, the Navigation 
level, by downloading the details mission. 

The navigation level is responsible for guiding the AUV following 
the planned path in the downloaded mission. It consists of two 
modules: Navigator and Obstacle Avoidance/Local Path Replanner. 
Both modules are written in Common LISP. The Navigator module is 
responsible for driving the vehicle under normal conditions. If the 
AUV movement is blocked by an unexpected (uncharted) obstacle, 
then the Obstacle Avoidance module becomes active and controls the 
AUV until it avoids the obstacle. If an obstacle is large enough to 
make the AUV deviate from the planned path, then the Local Path 
Replanner executes in order to return the AUV to the orginally 
planned path. 

In the Execution Level, maneuvering parameters given by the 
Navigation level are interpreted by the autopilot as control surface 
commands for the AUV's course, speed, and depth. The sensor 
modules get electronic and acoustic inputs and pass them to the 
vehicle controller or back up the hierarchy to the Navigator and the 
Obstacle Avoidance module, where the data is analyzed and acted on. 
The lowest level is written in C for fast execution speed and 
portability. 

Receiver 

25 Navigator 

Fig. 4. Structure of Mission Planning Expert System. 

The Execution level software is fully implemented in the AUV 
simulator, but the Navigation Level is not yet completed. Currently, 
only the simple functionality of the Navigator is running in the 
simulation environment. Online obstacle avoidance is not available. 

I )  The Mission Planning Level: The KEE software development 
shell organizes the Mission Planning level. This powerful software 
development tool runs on TI Explorer or Symbolics LISP machines. 
KEE provides integrated software paradigms: Rule-based and object- 
oriented. The former paradigm is valuable in expressing expertise 
demonstrated by a human, while the later is suitable for implementing 
functional entities having well-defined procedural knowledge. 

The Mission Planning Expert System, part of the Mission Planning 
Level, is composed of one supervisor called the Mission Planning 
Controller and three active agents: Mission Planner, Mission 
Constructor, and Mission Executor. The interaction among them is 
shown in Fig. 4. When the Mission Planning Expert System is 
started, the user first interacts with the Mission Receiver through 
parameter value panels presented on the LISP machine's monitor. 
After the user has specified the mission parameters to the Mission 
Receiver, the Mission Receiver checks the completeness of the 
parameters. If the user input is complete, the Mission Receiver 
generates the Mission Orders and initiates the operation of the 
Mission Planning Controller. 

The Mission Planning Controller instructs the Mission Planner to 
work on the Mission Orders. The Mission Planning Controller 
monitors the operation of the Mission Planner. When the operation is 
finished, the Mission Planning Controller initiates the operation of 
the Mission Constructor. With construction orders, the Mission 
Constructor generates the Mission Details, which include the path 
description with way points and speeds along the path. When this 
operation is finished, the Mission Planning Controller initiates the 
operation of the Mission Executor. The Mission Executor downloads 
the Mission Details to the Navigator in the second level of the system 
architecture. 

The Mission Planner is implemented as a rule-based system. It 
converts the human-oriented, unstructured information in the Mission 
Orders to structured and concrete information ouput as construction 
orders. The Mission Planner's major task is to analyze the Mission 
Orders and choose the correct search tool from the three search tools 
stored in and used by the Mission Constructor. Although the Mission 
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Planner does not possess the search tools, it knows their characteris- 
tics. Based on its knowledge about the tools, the Mission Planner 
examines the advantages and disadvantages of each tool and chooses 
the most appropriate. The Mission Planner’s functionality is very 
close to that of a group of voters casting ballots. To simulate this 
functionality, the Mission Planner internally has voting rules. Each 
voting rule becomes a voter and gives favor values to the available 
path planning tools. The Mission Planner then chooses the tool that 
receives the highest favor values from the voting rules and includes 
that tool in the construction orders. Each voting rule only concerns its 
own specialized area. For example, a rule that is tailored to the 
planning time requirement produces higher values for the tools based 
on the comparison between the expected planning time and the given 
planning time. Depending on the search tool (method), the time 
required to plan a path in the Mission Constructor differs greatly. The 
user limits the planning time of the system. Thus a tool becomes more 
or less favorable to the system than others. Besides tool recommenda- 
tion, the Mission Planner also processes environmental data in the 
Mission Orders and produces information usable by the Mission 
Constructor. For example, if the Mission Orders indicate that the 
surface threat is high, then the Mission Planner interprets this and 
generates more meaningful information to the Mission Constructor; 
i.e., “a shallower area than the mission depth is not allowed during 
path construction. ” The detailed implementation is reported in [7]. 

The Mission Constructor works on complete and well-structured 
input and output: The construction orders and mission details. The 
Mission Constructor’s task is also clearly defined. Thus its function- 
ality is implemented with a method (a procedure) and is realized with 
a KEE unit. It has three search tools: A*, Best-First and a Heuristic 
3D, grid-based graphics search. The heuristic search method, 
adapted from [SI and modified for the AUV application, is included 
to increase the system performance, because the Heuristic search has 
large time and space advantages over the other search methods. The 
path obtained from the Heuristic search is slightly inferior to that of 
A* and is almost equivalent to that of Best-First for most cases. Some 
details concerning the Heuristic search method are reported in [SI. 
With the search method selected by the Mission Planner, the Mission 
Constructor plans a path from the start to the goal. The path consists 
of a series of way points to the goal. Finally, the Mission Constructor 
generates the Mission Details with the way points and the desired 
speed along the path. 

The Mission Executor is implemented with a KEE unit for the 
same reason as that of the Mission Constructor. The Mission 
Executor’s functionality is :jimple. It converts the Mission Details 
into a form downloadable to the Navigator in the Navigation Level. 

2) Navigation Level: In the simulation environment, the Naviga- 
tor resides in the Symbolics LISP machine, while in an actual 
environment this level is in the AUV vehicle mission control 
computer. The Navigator in the LISP machine drives the vehicle 
following the way points downloaded from the Mission Planning 
Level. Because the simulator is running on a Silicon Graphics IRIS 
workstation, there are frequent data exchanges via the communica- 
tions interface between the LISP machine and workstation. The 
Navigator sends course, speed, and depth commands to the IRIS 
workstation and monitors the position of the AUV to ensure that the 
AUV follows the desired path. The Navigator continuously compares 
the current AUV position and desired subgoal, one of the way points 
along the path. The Navigator constantly corrects the vehicle 
movement by using a line-of-sight guidance law. The navigator 
converts a position error between the current position and subgoal 
position to velocity commands, and then feeds them to the AUV 
simulator. If the AUV gets within a certain distance to a subgoal, then 

the Navigator chooses the next way point and uses it as a new subgoal 
to drive the AUV simulator. When the AUV reaches the goal, the 
Navigator makes the AUV return to base. To return to base, the 
Navigator uses the stored way points in reverse order. 

3) The Execution Level: The Execution level is written in C and 
runs on the IRIS 4D/70GT graphics workstation. This level is the 
lowest level of AUV control; it executes either manual or autopilot 
commands to update vehicle and environmental displays. In autopilot 
mode, the Execution level receives planning-level commands for the 
location of the next mission subgoal, AUV course/speed/depth, and 
the mission phase. The Execution level code interprets these 
commands, positions each control surface to achieve the AUV’s 
commands, and updates the three-dimensional visual display to show 
the vehicle’s current orientation. 

At each update of the three-dimensional visual display, the 
Execution level passes sensor information up to the Mission Planning 
level. This data is processed and can be used to alter the next set of 
guidance commands. An example of this occurs when the AUV’s 
sensor reports “uncharted” shallow water or obstacles (features 
unknown to the navigator’s environmental database), causing the 
planning level to alter its commands, reposition the AUV, and 
prevent a collision. 

E. Communications Software 
The execution-level code on each IRIS graphics workstation 

requires communications support for data exchanges with the 
planning-level code on the LISP machine. Both communications 
modules link a graphics workstation with a LISP machine via an 
Ethernet cable; each module passes the same data types and structures 
in slightly different formats. The operator selects the machine on 
which the simulation will be run; this determines which portions of 
the communications modules will be used to support the simulation. 
The information exchange between a LISP machine and an IRIS 
workstation allows the planning level to send commands to control 
the Execution level; the Execution level uses the communications 
code to send simulated sensor data back to the LISP machine for 
analysis. This information exchange executes in a loop that occurs 
about every 3 s. After carrying out its initial mission commands, the 
Execution level passes to the planning level data containing the 
AUV’s present course, speed, and depth, and the depth under the 
keel, and sonar contact bearinghange information. The LISP 
machine analyzes this data and sends back the mission phase 
command, the coordinates of the next subgoal, and the autopilot 
course, speed, and depth required to reach the subgoal. 

This communication code is not critical to the success of the NPS 
AUV and will not be used for actual AUV operations. This being the 
case, emphasis was placed on implementing a functional solution 
instead of a robust efficient subsystem. The actual NPS AUV mission 
control computer uses a single processor which allows data to be 
passed between the planning and execution level in a much quicker 
and more reliable way. 

111. CONCLUSIONS/LIMITATIONS/PERFORMANCE 

NPS AUV-Siml offers an excellent facility for prototyping new 
mission plans designed for open-ocean environments. In conjunction 
with the graphical simulation, researchers at NPS have developed 
nine different missions in this format, falling within the general areas 
of charting, reconnaissance, surveillance, and covert payload deliv- 
ery. To support this research, a mission template concept has been 
adopted as an aid to human understanding and programming complex 
missions [3]. To create a proposed generic mission, a programmer 
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AUV Mission Template 

Name: 
purpose: 
Duration: 
Transit Depth: 
Transit Speed: 
On Station Time: 
Action On Sration: 

Mission F o m :  

Fig. 5 .  AUV mission template. 

first fills out the blanks in the template in the mission template form 
(see Fig. 5). This can then be used as a specification to write the 
program for the intended mission. This concept has proved to be a 
valuable tool for writing mission and planning-level LISP code. 

NSP AUV-Sim2 is an important tool for incorporating new 
autonomous control concepts and algorithms into the latest version of 
the NPS AUV. The KEE expert system shell provides an inexperi- 
enced operator with an interactive (user-prompt and mouse-driven) 
Mission Planning Control Panel structure for rapid mission planning 
and execution. The Mission Planning Control Panel is a prototype for 
control panels that may be placed on actual AUV deployment 
platforms in the future. The shell also provides a powerful environ- 
ment in which programmers can modify the simulator’s mission-level 
code and develop additional missions [4]. The faster and more 
powerful IRIS 4D/70GT graphics workstation effectively simulates 
the AUV’s actual operation with a real-time display of the vehicle’s 
actions, and this workstation has the capacity to accommodate more 
complex AUV models or controllers. 

The simulator is a valuable test and debugging environment which 
will save countless hours of experimentation; it will also verify code 
reliability before the software is installed in the actual NPS Model 2 
AUV computer system. NPS AUV-Sim2 provides the operator with a 
wide choice of starting locations and viewing positions to thoroughly 
examine vehicle performance from many different perspectives. This 
viewing flexibility greatly reduces the risks, simplifies the logistics, 
and minimizes the costs of testing the NPS Model 2 AUV in its ocean 
environment. 
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Using Common LISP in the EAVE Autonomous 
Underwater Vehicle 

PAUL S. BOWEN, STEVEN G .  CHAPPELL, AND ROGER GONZALEZ 

Abstract-The Marine Systems Engineering Laboratory of the Univer- 
sity of New Hampshire has ported the University of Utah’s Portable 
Common LISP Subset (PLCS) to the EAVE underwater autonomous 
vehicle. The use of Common LISP in the EAVE autonomous vehicle is 
expected to improve programmer productivity and software portability. 
Also, the use of the LISP interpreter will allow for software changes to be 
made while in the field, thus saving time during vehicle operations. 

Issues concerning the operation of LISP in a real-time environment, 
such as the impact of garbage collection, have been resolved by using an 
efficient version of Common LISP and by using LISP at the high-end of a 
time-based software hierarchy. 

Keywords-Autonomous vehicles, PCLS, porting, pSOS, embedded 
systems. 

I. INTRODUCTION 

The Marine Systems Engineering Laboratory (MSEL) at the 
University of New Hampshire has been involved in the design, 
development, and operation of several generations of autonomous 
underwater vehicles [1]-[3]. The first vehicle developed by MSEL, 
the Experimental Autonomous Vehicle (EAVE) , was designed to 
perform pre-programmed tasks without any human intervention once 
the mission was underway. The computing system was designed and 
developed in-house and consisted of one Motorola M68000 and three 
Harris 6100 processors with a maximum of 32 kilobytes each of 
RAM. This sufficed to control the vehicle and provide minimal 
navigation and sensor management. 

The desire for increased capability and flexibility led to the 
development of the second- and third-generation vehicles. Today, 
EAVE’s computing hardware consists of two levels of computing 
systems: A lower level consisting of three Motorola M68000 
processors, and an upper level which is made up of several VME- 
based M68020 processors, each with 1-4 Megabytes of RAM. Both 
systems run the Software Components Group’s pSOS, which is a 
small and efficient real-time operating system. The lower-level 
computers operate the thrusters and interface directly with the 
sensors. The high-level computers provide a platform for the more 
advanced control algorithms such as situation assessment, mission 
planning, and world models. 

The tremendous gains in hardware capacity can be contrasted with 
a lag in the development of the vehicle’s high-level software, thus 
delaying the realization of the full potential of the current system. The 
primary reason for this lag is due to the difficulty of developing 
experimental software in a conventional programming environment. 
In our estimation, one solution to the software development bottle- 
neck is to introduce a programming environment which facilitates the 
development of sophisticated software, offers device independence, 
and improves on the ability to diagnose and effect changes in the 
field. 

Towards that end, MSEL has ported the University of Utah’s 
Portable Common LISP Subset (PCLS) to our UNIX-based software 
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