
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications

1990-07

Three-dimensional visualization of

mission planning and control for the

NPS autonomous underwater vehicle

Zyda, Michael J.

http://hdl.handle.net/10945/41297

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36733601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

217 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 15, NO. 3, JULY 1990

Communications

Three-Dimensional Visualization of Mission Planning
and Control For the NPS Autonomous Underwater

Vehicle

MICHAEL J. ZYDA, ROBERT B. MCGHEE, FELLOW, IEEE,
SEHUNG KWAK, MEMBER, IEEE, DOUGLAS B. NORDMAN,

RAY C. ROGERS, AND DAVID MARC0

Abstract-Unmanned vehicles can operate where humans cannot or do
not want to go. The last decade’s advances in computer processor
capability and speed, component miniaturization, signal processing, and
high-energy density power supplies have made remotely operated vehicles
(ROV’s) and, to some extent, autonomous vehicles, a reality. In an effort
to further advance this technology, the Naval Postgraduate School (NPS)
is constructing a small autonomous underwater vehicle (AUY) with an
onboard mission control computer. The mission controller software for
this vehicle is a knowledge-based artificial intelligence (AI) system
requiring thorough analysis and testing before the AUV is operational.
We discuss how rapid prototyping of this software has been demonstrated
by developing controller code on a LISP machine and using an Ethernet
link with a graphics workstation to simulate the controller’s environment.
Additionally, we discuss the development of a new testing simulator using
a KEE expert system shell that is designed to examine AUV controller
subsystems and vehicle models before integrating them with the full AUV
for its test environment missions. This AUV simulator utilizes an
interactive Mission Planning Control Console and is fully autonomous
once initial parameters are selected.

I. INTRODUCTION

Autonomous vehicles can go where humans cannot or do not want
to go. Autonomous vehicles are capable of receiving initial input,
moving to another location, executing a mission, and returning with
the requested results or data. In addition to performing labor intensive
or repetitive tasks, these vehicles can perform their jobs faster and
with greater precision than humans, and can also proceed into hostile
or contaminated environments.

For the last 30 years, remotely operated vehicles (ROV’s) have
attempted to fill these needs and the last decade’s tremendous
advances in computer and systems engineering, as well as the rapid
deployment of ROV’s, here validated vehicle and sensor designs.
AUV design is not so advanced. While ROV’s can cheaply use rapid
prototyping and testing techniques, AUV’s are still quite complicated
and costly. The operational testing process subjects these expensive
vehicles to harsh and unpredictable environments in which the
logistics are difficult and some AUV losses are unavoidable. While
there is no substitute for operational experience, most of the AUV’s
engineering problems have been solved while learning how to operate
ROV’s. The last step is the development of high-level mission
planners that can be simply and cheaply tested without expensive
logistics and unaffordable losses.

One solution to this problem is through the use of three-
dimensional visual simulation. Through the use of vehicle simulators,
AI mission planners can be developed in the laboratory and can

Manuscript received October 8, 1989; revised March 27, 1990. Thls work
was supported by the Naval Postgraduate School’s Direct Funding Program.

The authors are with the Department of Computer Science, Code 52, Naval
Postgraduate School, Monterey, CA 93943.

IEEE Log Number 9036197.

receive data inputs from artificial (computer-generated) sources. The
planner’s outputs can be used to drive a simulator whose actions can
be observed and interpreted to evaluate the effectiveness of the
planner without having to risk the vehicle. The same powerful
computer systems that have revived AUV research can thus be used
for rapid AUV prototyping and low-risk initial testing.

The U.S. Navy has identified a number of tasks that can be
performed by AUV’s and the Defense Advanced Research Projects
Agency (DARPA) strongly supports AUV research [l], [2]. The
Naval Postgraduate School (NPS) is developing an experimental
AUV to support research relating to these military requirements. Part
of this project is the design of three-dimensional visual simulators that
will reduce the time and expense of implementing various AUV
subsystems, while also permitting efforts to proceed along several
simultaneous approaches. Previous simulator research at the NPS [3]
has shown that graphics workstations provide a useful way to
simulate a realistic external environment for conducting AUV
operations, and more recently, a new simulator has been developed to
generate a “laboratory environment” for testing several AUV
planning, navigation, and control subsystems [4]. This approach
permits the prompt development and thorough testing of AI software
for the NPS AUV, the examination of different AUV hydrodynamic
models, the testing of maneuvering subsystems in conjuction with
different sensor configurations, as well as the prototyping and
development of AUV Mission Planning Control Stations for possible
use on AUV launching platforms. These proven subsystems are being
integrated with the AUV mission planner to develop full-scale
proposed missions before operational testing of the actual vehicle.

11. NPS AUV SIMULATOR DEVELOPMENT HISTORY

A . Vehicle Characteristics

The NPS AUV is modeled after the Swimmer Delivery Vehicle
(SDV) used for the delivery and extraction of the U.S. Navy Special
Warfare Teams. The actual NPS Model 2 AUV resembles the SDV
and the simulator’s vehicle dynamics have been scaled to the
dimensions of the AUV currently under construction.

The simulator’s controller carries out AUV operations by directing
its output to either of two three-dimensional visual representation
systems. NPS AUV-Siml is a simplified vehicle which models
complex AUV missions in the open-ocean environment. NPS AUV-
Sim2 uses a more sophisticated SDV hydrodynamic model in a small
“test pool” to evaluate various AUV configurations and to develop
the actual control algorithms that are being used by the NPS Model 2
AUV .

1) NPS A UV-Siml: The first three-dimensional vehicle simula-
tion system [3] permits mission execution without requiring a detailed
implementation of AUV dynamics. The simulator represents a small
manned vehicle with a control panel and a “through the periscope”
display similar to that of the U.S. Navy’s Sturgeon class attack
submarine. The vehicle has a single screw and rudder and maintains
continuous neutral buoyancy. Aft-mounted sternplanes impart a hull
pitch angle for large depth changes, while forward-mounted bow-
planes provide more precise depth control without generating a pitch
angle. Although operators can manually operate the AUV, the
vehicle is normally under autopilot control.

The NPS AUV-Siml dynamics model consists of a simple point-

U.S. Government work not protected by U.S. copyright

*.

218 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 15, NO. 3, JULY 1990

mass approximation governed by one acceleration equation, two rate
equations, and one attitude equation. The vehicle’s location and
orientation is described by applying these equations at a 10-Hz rate
and by setting the autopilot’s control surface positions according to
depth or course error. AUV speed is chosen by the autopilot and is
limited by battery charge or the onset of cavitation. Acceleration is
fixed at 1 kn/s2, while depth and azimuth rates depend on a
combination of speed and control surface angle. The vehicle’s pitch
angle is assigned a steady-state value determined by the AUV’s speed
and sternplane angle.

Although the AUV displays rigid body behavior and inertial delay,
no attempt was made to model actual submarine dynamics, since
these would have little impact on the large-scale decisions imple-
mented by the mission controller. This model is a simple and
effective way to display the actions and results generated by mission
execution algorithms.

2) NPS A UV-Sim2: The second simulation system is based on the
Swimmer Delivery Vehicle’s dynamics and preliminary NPS model
hydrodynamic test data [5]. The hull shape is a flattened cylinder with
a rounded bow and a tapered stern; the AUV maneuvers with bow
planes, stern planes, twin rudders, and twin screws. The dynamics
model uses a vehicle mass of 12 OOO lbs at neutral buoyancy with a
length of 17 ft, a beam of 5 ft, and a height of 2.5 ft (the visual
representation has been scaled proportionately to a length of 5 ft).
The NPS Model 2 AUV (still under construction) is being equipped
with two vertical and two horizontal thrusters; the simulator image
shows these thrusters (see Figs. 1 and 2 for a simulator view of NPS
AUV Model 2).

The AUV’s position, orientation, and velocity are determined by
calculating hydrodynamic drag forces and Euler angle rates and then
updating these parameters at a 30-Hz rate. The AUV is displayed
from an external point of view instead of the earlier “through the
periscope” perspective. The simulation program is a considerable
inprovement over the NPS AUV Siml model, since the AUV exhibits
realistic acceleration and inertial behavior.

NPS AUV-Siml [6] was designed to evaluate AUV hydrodynamic
coefficients and examine the resulting vehicle dynamics under a
variety of speeds and pitch angles. The simulator relies on mouse-
indicated manipulation of the vehicle’s control surfaces and its speed;
there is no autopilot controller.

The NPS AUV-Sim2 system uses a simple autopilot depth or
course-error calculation to set control surface positions for maneu-

Fig. 2. NPS AUV-SIM2.

vers. Autopilot orders create control surface angles that in turn act on
the AUV hydrodynamic model to generate changes in depth or
course. Although this first-order controller produces abrupt and
nonlinear control surface behavior, the NPS Model 2 AUV design
team is developing a more advanced control system. The simulator’s
modular code structure allows the advanced controller algorithm to
be easily installed between the autopilot and hydrodynamic model for
testing and analysis.

B. Environment

The ocean environment for NPS AUV-Siml is described in detail
in [3]. The simulation begins with the AUV at periscope depth in a
sector of water 5 nmi on a side. The seafloor of this model is a
submerged cone with an exposed island (the cone’s vertex) near the
center of the sector. In addition to the island and its shoals, the AUV
must also contend with a number of surface contacts-military
vessels, merchant ships, and buoys. The large body of water and its
congested environment provide a realistic test of the AUV’s mission
control and guidance subsystems.

The water environment for NPS AUV-Sim2 is modeled after a
proposed test site for the actual vehicle. The simulation displays a
“swimming pool” (120 ft by 60 ft by 8 f t deep) containing a number
of submerged cylindrical obstacles. The simulator’s AUV and test
pool are scaled to the actual sizes of the NPS AUV and its test site,
although the hydrodynamic model is not yet scaled to this environ-
ment. The test pool is a much simpler environment than the ocean
environment of NPS AUV-Siml and is intended to give the AUV
design team a realistic way to test various algorithms for mission
control, guidance, and vehicle control before integrating the software
with the actual AUV.

C. Missions

The simulator’s mission control software is divided into four main
categories: Charting, reconnaissance, surveillance, and covert pay-
load delivery. In each category, the mission controller executes the
algorithms required to maneuver the AUV to the desired location,
perform its required tasks, and return the vehicle to its starting
position. Additional algorithms handle other tasks or emergencies
such as path planning, uncharted shallow water, or close contacts.

Lesser “missions” test the NPS Model 2 AUV’s guidance and
control subsystems. These tasks, subsets of the larger missions,
analyze the vehicle’s ability to transit and navigate in the test pool.

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 15, NO. 3, JULY 1990

Sensor

219

Execution
A"t0UUVd Level

*nul.

I
Knowledge B a d
Mission Planning

Expm System

Mission Planning
Environmental

Databaw

Obstacle AvoidaneJ
Navigator

Environmental
Database

Navigation
Level

(Common Lisp)

Conwl

Fig. 3 . Control system architecture.

This starts with simple maneuvers such as crossing the pool or
circumnavigating it and builds into more complicated sequences
requiring the vehicle to execute depth changes, to pass through and/or
hover at specific coordinates, and to maneuver for collision avoid-
ance.

D. Control System Architecture and Languages

The overall software architecture implemented for the NPS Model
2 AUV is shown in Fig. 3. The top level is the Mission Planning
level, which is implemented with rules and a knowledge-base using
the KEE (Knowledge Engineering Environment) software develop-
ment shell. The user interacts directly with this level by selecting a
mission and then supplying additional information via prompts. Once
this information has been acquired, this level automatically plans a
mission, which includes a detailed path to a goal. As a path i s
planned, all the known obstacles and environment data are consid-
ered. The mission is passed down to the lower level, the Navigation
level, by downloading the details mission.

The navigation level is responsible for guiding the AUV following
the planned path in the downloaded mission. It consists of two
modules: Navigator and Obstacle Avoidance/Local Path Replanner.
Both modules are written in Common LISP. The Navigator module is
responsible for driving the vehicle under normal conditions. If the
AUV movement is blocked by an unexpected (uncharted) obstacle,
then the Obstacle Avoidance module becomes active and controls the
AUV until it avoids the obstacle. If an obstacle is large enough to
make the AUV deviate from the planned path, then the Local Path
Replanner executes in order to return the AUV to the orginally
planned path.

In the Execution Level, maneuvering parameters given by the
Navigation level are interpreted by the autopilot as control surface
commands for the AUV's course, speed, and depth. The sensor
modules get electronic and acoustic inputs and pass them to the
vehicle controller or back up the hierarchy to the Navigator and the
Obstacle Avoidance module, where the data is analyzed and acted on.
The lowest level is written in C for fast execution speed and
portability.

Receiver

25 Navigator

Fig. 4. Structure of Mission Planning Expert System.

The Execution level software is fully implemented in the AUV
simulator, but the Navigation Level is not yet completed. Currently,
only the simple functionality of the Navigator is running in the
simulation environment. Online obstacle avoidance is not available.

I) The Mission Planning Level: The KEE software development
shell organizes the Mission Planning level. This powerful software
development tool runs on TI Explorer or Symbolics LISP machines.
KEE provides integrated software paradigms: Rule-based and object-
oriented. The former paradigm is valuable in expressing expertise
demonstrated by a human, while the later is suitable for implementing
functional entities having well-defined procedural knowledge.

The Mission Planning Expert System, part of the Mission Planning
Level, is composed of one supervisor called the Mission Planning
Controller and three active agents: Mission Planner, Mission
Constructor, and Mission Executor. The interaction among them is
shown in Fig. 4. When the Mission Planning Expert System is
started, the user first interacts with the Mission Receiver through
parameter value panels presented on the LISP machine's monitor.
After the user has specified the mission parameters to the Mission
Receiver, the Mission Receiver checks the completeness of the
parameters. If the user input is complete, the Mission Receiver
generates the Mission Orders and initiates the operation of the
Mission Planning Controller.

The Mission Planning Controller instructs the Mission Planner to
work on the Mission Orders. The Mission Planning Controller
monitors the operation of the Mission Planner. When the operation is
finished, the Mission Planning Controller initiates the operation of
the Mission Constructor. With construction orders, the Mission
Constructor generates the Mission Details, which include the path
description with way points and speeds along the path. When this
operation is finished, the Mission Planning Controller initiates the
operation of the Mission Executor. The Mission Executor downloads
the Mission Details to the Navigator in the second level of the system
architecture.

The Mission Planner is implemented as a rule-based system. It
converts the human-oriented, unstructured information in the Mission
Orders to structured and concrete information ouput as construction
orders. The Mission Planner's major task is to analyze the Mission
Orders and choose the correct search tool from the three search tools
stored in and used by the Mission Constructor. Although the Mission

220 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 15, NO. 3, JULY 1990

Planner does not possess the search tools, it knows their characteris-
tics. Based on its knowledge about the tools, the Mission Planner
examines the advantages and disadvantages of each tool and chooses
the most appropriate. The Mission Planner’s functionality is very
close to that of a group of voters casting ballots. To simulate this
functionality, the Mission Planner internally has voting rules. Each
voting rule becomes a voter and gives favor values to the available
path planning tools. The Mission Planner then chooses the tool that
receives the highest favor values from the voting rules and includes
that tool in the construction orders. Each voting rule only concerns its
own specialized area. For example, a rule that is tailored to the
planning time requirement produces higher values for the tools based
on the comparison between the expected planning time and the given
planning time. Depending on the search tool (method), the time
required to plan a path in the Mission Constructor differs greatly. The
user limits the planning time of the system. Thus a tool becomes more
or less favorable to the system than others. Besides tool recommenda-
tion, the Mission Planner also processes environmental data in the
Mission Orders and produces information usable by the Mission
Constructor. For example, if the Mission Orders indicate that the
surface threat is high, then the Mission Planner interprets this and
generates more meaningful information to the Mission Constructor;
i.e., “a shallower area than the mission depth is not allowed during
path construction. ” The detailed implementation is reported in [7].

The Mission Constructor works on complete and well-structured
input and output: The construction orders and mission details. The
Mission Constructor’s task is also clearly defined. Thus its function-
ality is implemented with a method (a procedure) and is realized with
a KEE unit. It has three search tools: A*, Best-First and a Heuristic
3D, grid-based graphics search. The heuristic search method,
adapted from [SI and modified for the AUV application, is included
to increase the system performance, because the Heuristic search has
large time and space advantages over the other search methods. The
path obtained from the Heuristic search is slightly inferior to that of
A* and is almost equivalent to that of Best-First for most cases. Some
details concerning the Heuristic search method are reported in [SI.
With the search method selected by the Mission Planner, the Mission
Constructor plans a path from the start to the goal. The path consists
of a series of way points to the goal. Finally, the Mission Constructor
generates the Mission Details with the way points and the desired
speed along the path.

The Mission Executor is implemented with a KEE unit for the
same reason as that of the Mission Constructor. The Mission
Executor’s functionality is :jimple. It converts the Mission Details
into a form downloadable to the Navigator in the Navigation Level.

2) Navigation Level: In the simulation environment, the Naviga-
tor resides in the Symbolics LISP machine, while in an actual
environment this level is in the AUV vehicle mission control
computer. The Navigator in the LISP machine drives the vehicle
following the way points downloaded from the Mission Planning
Level. Because the simulator is running on a Silicon Graphics IRIS
workstation, there are frequent data exchanges via the communica-
tions interface between the LISP machine and workstation. The
Navigator sends course, speed, and depth commands to the IRIS
workstation and monitors the position of the AUV to ensure that the
AUV follows the desired path. The Navigator continuously compares
the current AUV position and desired subgoal, one of the way points
along the path. The Navigator constantly corrects the vehicle
movement by using a line-of-sight guidance law. The navigator
converts a position error between the current position and subgoal
position to velocity commands, and then feeds them to the AUV
simulator. If the AUV gets within a certain distance to a subgoal, then

the Navigator chooses the next way point and uses it as a new subgoal
to drive the AUV simulator. When the AUV reaches the goal, the
Navigator makes the AUV return to base. To return to base, the
Navigator uses the stored way points in reverse order.

3) The Execution Level: The Execution level is written in C and
runs on the IRIS 4D/70GT graphics workstation. This level is the
lowest level of AUV control; it executes either manual or autopilot
commands to update vehicle and environmental displays. In autopilot
mode, the Execution level receives planning-level commands for the
location of the next mission subgoal, AUV course/speed/depth, and
the mission phase. The Execution level code interprets these
commands, positions each control surface to achieve the AUV’s
commands, and updates the three-dimensional visual display to show
the vehicle’s current orientation.

At each update of the three-dimensional visual display, the
Execution level passes sensor information up to the Mission Planning
level. This data is processed and can be used to alter the next set of
guidance commands. An example of this occurs when the AUV’s
sensor reports “uncharted” shallow water or obstacles (features
unknown to the navigator’s environmental database), causing the
planning level to alter its commands, reposition the AUV, and
prevent a collision.

E. Communications Software
The execution-level code on each IRIS graphics workstation

requires communications support for data exchanges with the
planning-level code on the LISP machine. Both communications
modules link a graphics workstation with a LISP machine via an
Ethernet cable; each module passes the same data types and structures
in slightly different formats. The operator selects the machine on
which the simulation will be run; this determines which portions of
the communications modules will be used to support the simulation.
The information exchange between a LISP machine and an IRIS
workstation allows the planning level to send commands to control
the Execution level; the Execution level uses the communications
code to send simulated sensor data back to the LISP machine for
analysis. This information exchange executes in a loop that occurs
about every 3 s. After carrying out its initial mission commands, the
Execution level passes to the planning level data containing the
AUV’s present course, speed, and depth, and the depth under the
keel, and sonar contact bearinghange information. The LISP
machine analyzes this data and sends back the mission phase
command, the coordinates of the next subgoal, and the autopilot
course, speed, and depth required to reach the subgoal.

This communication code is not critical to the success of the NPS
AUV and will not be used for actual AUV operations. This being the
case, emphasis was placed on implementing a functional solution
instead of a robust efficient subsystem. The actual NPS AUV mission
control computer uses a single processor which allows data to be
passed between the planning and execution level in a much quicker
and more reliable way.

111. CONCLUSIONS/LIMITATIONS/PERFORMANCE

NPS AUV-Siml offers an excellent facility for prototyping new
mission plans designed for open-ocean environments. In conjunction
with the graphical simulation, researchers at NPS have developed
nine different missions in this format, falling within the general areas
of charting, reconnaissance, surveillance, and covert payload deliv-
ery. To support this research, a mission template concept has been
adopted as an aid to human understanding and programming complex
missions [3]. To create a proposed generic mission, a programmer

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 15, NO. 3, JULY 1990 22 1

AUV Mission Template

Name:
purpose:
Duration:
Transit Depth:
Transit Speed:
On Station Time:
Action On Sration:

Mission F o m :

Fig. 5 . AUV mission template.

first fills out the blanks in the template in the mission template form
(see Fig. 5). This can then be used as a specification to write the
program for the intended mission. This concept has proved to be a
valuable tool for writing mission and planning-level LISP code.

NSP AUV-Sim2 is an important tool for incorporating new
autonomous control concepts and algorithms into the latest version of
the NPS AUV. The KEE expert system shell provides an inexperi-
enced operator with an interactive (user-prompt and mouse-driven)
Mission Planning Control Panel structure for rapid mission planning
and execution. The Mission Planning Control Panel is a prototype for
control panels that may be placed on actual AUV deployment
platforms in the future. The shell also provides a powerful environ-
ment in which programmers can modify the simulator’s mission-level
code and develop additional missions [4]. The faster and more
powerful IRIS 4D/70GT graphics workstation effectively simulates
the AUV’s actual operation with a real-time display of the vehicle’s
actions, and this workstation has the capacity to accommodate more
complex AUV models or controllers.

The simulator is a valuable test and debugging environment which
will save countless hours of experimentation; it will also verify code
reliability before the software is installed in the actual NPS Model 2
AUV computer system. NPS AUV-Sim2 provides the operator with a
wide choice of starting locations and viewing positions to thoroughly
examine vehicle performance from many different perspectives. This
viewing flexibility greatly reduces the risks, simplifies the logistics,
and minimizes the costs of testing the NPS Model 2 AUV in its ocean
environment.

141

151

171

REFERENCES

R. C. Robinson, “National defense applications of autonomous
underwater vehicles,” IEEE J. Oceanic Eng., vol. OE-11, pp. 462-
467, Oct. 1986.
S. Eisenstadt, “Navy envisions $5 billion ASW minisub fleet,”
Defense News, vol. 2, no. 51, p. 1, Dec. 24, 1987.
D. L. MacPherson, “A computer simulation study of rule-based
control of an autonomous underwater vehicle,” Master’s thesis, Naval
Postgraduate School, Monterey, CA, June 1988.
D. B. Nordman, “A computer simulation study of mission planning
and control for the NPS autonomous underwater vehicle,” Master’s
thesis, Naval Postgraduate School, Monterey, CA, June 1989.
G . L. MacDonald, “Model-based compensator design and experimen-
tal verification of control systems for a model AUV,” Master’s thesis,
Naval Postgraduate School, Monterey, CA, Mar. 1989.
M. Schwartz, “Systems identification and control for an AUV,”
Master’s thesis, Naval Postgraduate School, Monterey, CA, Mar.
1989.
S. H. Kwak, S. M. Ong, and R. B. McGhee, “A mission planning
expert system for autonomous underwater vehicles,” in Proc. Symp.
Autonomous Underwater Vehicle Techn. (Washington, DC), June 6,
1990, to be published
D. K. Ok, “A computer simulation study of a sensor-based heuristic
navigation for three dimensional rough terrain with obstacles,”
Master’s thesis, Naval Postgraduate School, Monterey, CA, June 1989.

Using Common LISP in the EAVE Autonomous
Underwater Vehicle

PAUL S. BOWEN, STEVEN G . CHAPPELL, AND ROGER GONZALEZ

Abstract-The Marine Systems Engineering Laboratory of the Univer-
sity of New Hampshire has ported the University of Utah’s Portable
Common LISP Subset (PLCS) to the EAVE underwater autonomous
vehicle. The use of Common LISP in the EAVE autonomous vehicle is
expected to improve programmer productivity and software portability.
Also, the use of the LISP interpreter will allow for software changes to be
made while in the field, thus saving time during vehicle operations.

Issues concerning the operation of LISP in a real-time environment,
such as the impact of garbage collection, have been resolved by using an
efficient version of Common LISP and by using LISP at the high-end of a
time-based software hierarchy.

Keywords-Autonomous vehicles, PCLS, porting, pSOS, embedded
systems.

I. INTRODUCTION

The Marine Systems Engineering Laboratory (MSEL) at the
University of New Hampshire has been involved in the design,
development, and operation of several generations of autonomous
underwater vehicles [1]-[3]. The first vehicle developed by MSEL,
the Experimental Autonomous Vehicle (EAVE) , was designed to
perform pre-programmed tasks without any human intervention once
the mission was underway. The computing system was designed and
developed in-house and consisted of one Motorola M68000 and three
Harris 6100 processors with a maximum of 32 kilobytes each of
RAM. This sufficed to control the vehicle and provide minimal
navigation and sensor management.

The desire for increased capability and flexibility led to the
development of the second- and third-generation vehicles. Today,
EAVE’s computing hardware consists of two levels of computing
systems: A lower level consisting of three Motorola M68000
processors, and an upper level which is made up of several VME-
based M68020 processors, each with 1-4 Megabytes of RAM. Both
systems run the Software Components Group’s pSOS, which is a
small and efficient real-time operating system. The lower-level
computers operate the thrusters and interface directly with the
sensors. The high-level computers provide a platform for the more
advanced control algorithms such as situation assessment, mission
planning, and world models.

The tremendous gains in hardware capacity can be contrasted with
a lag in the development of the vehicle’s high-level software, thus
delaying the realization of the full potential of the current system. The
primary reason for this lag is due to the difficulty of developing
experimental software in a conventional programming environment.
In our estimation, one solution to the software development bottle-
neck is to introduce a programming environment which facilitates the
development of sophisticated software, offers device independence,
and improves on the ability to diagnose and effect changes in the
field.

Towards that end, MSEL has ported the University of Utah’s
Portable Common LISP Subset (PCLS) to our UNIX-based software

Manuscript received October 1989; revised March 27, 1990. This work
was partially supported by the National Science Foundation through Grant

The authors are with the Marine System Engineering Laboratory, Univer-

IEEE Log Number 9036196.

EID-8818406.

sity of New Hampshire, Durham, NH 03824.

0364-9059/90/0700-0221$01 .OO 0 1990 IEEE

