39 research outputs found

    Nematic response revealed by coherent phonon oscillations in BaFe2_2As2_2

    Full text link
    We investigate coherent phonon oscillations of BaFe2_2As2_2 using optical pump-probe spectroscopy. Time-resolved optical reflectivity shows periodic modulations due to A1gA_{1g} coherent phonon of cc-axis arsenic vibrations. Optical probe beams polarized along the orthorhombic aa- and bb-axes reveal that the initial phase of coherent oscillations shows a systematic deviation as a function of temperature, although these oscillations arise from the same cc-axis arsenic vibrations. The oscillation-phase remains anisotropic even in the tetragonal structure, reflecting a nematic response of BaFe2_2As2_2. Our study suggests that investigation on the phase of coherent phonon oscillations in optical reflectivity can offer unique evidence of a nematic order strongly coupled to a lattice instability.Comment: 5 pages, 4 figure

    Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors

    Get PDF
    Chiral supramolecules have great potential for use in chiral recognition, sensing, and catalysis. Particularly, chiral supramolecular biocoordination polymers (SBCPs) provide a versatile platform for characterizing biorelated processes such as chirality transcription. Here, we selectively synthesize homochiral and heterochiral SBCPs, composed of chiral naphthalene diimide ligands and Zn ions, from enantiomeric and mixed R-ligands and S-ligands, respectively. Notably, we find that the chiral self-sorted SBCPs exhibit multifunctional properties, including photochromic, photoluminescent, photoconductive, and chemiresistive characteristics, thus can be used for various sensors. Specifically, these materials can be used for detecting hazardous amine materials due to the electron transfer from the amine to the SBCP surface and for enantioselectively sensing a chiral species naproxen due to the different binding energies with regard to their chirality. These results provide guidelines for the synthesis of chiral SBCPs and demonstrate their versatility and feasibility for use in various sensors covering photoactive, chemiresistive, and chiral sensors

    Abnormal phase flip in the coherent phonon oscillations of Ca2RuO4

    Get PDF
    We employ an optical pump-probe technique to study coherent phonon oscillations in Ca2RuO4. We find that oscillation amplitude of an Ag symmetric phonon mode is strongly suppressed at 260 K, a putative transition point of orbital ordering. The oscillation also shows a gradual but huge change in its phase, such that the oscillation even flips over with a 180 change across the temperature. Density functional theory calculations indicate that the Ag phonon has an eigenmode of octahedral distortion with conventional tilting along the a axis and antipolar distortion of apical oxygen. Careful inspection of the lattice captures an unusually large antipolar distortion in low-temperature structures, which may play a crucial role for the phase transition at 260 K. ©2018 American Physical Societ
    corecore