6 research outputs found

    Deep reinforcement learning approaches for global public health strategies for COVID-19 pandemic

    Get PDF
    Background Unprecedented public health measures have been used during this coronavirus 2019 (COVID-19) pandemic to control the spread of SARS-CoV-2 virus. It is a challenge to implement timely and appropriate public health interventions. Methods and findings Population and COVID-19 epidemiological data between 21st January 2020 to 15th November 2020 from 216 countries and territories were included with the implemented public health interventions. We used deep reinforcement learning, and the algorithm was trained to enable agents to try to find optimal public health strategies that maximized total reward on controlling the spread of COVID-19. The results suggested by the algorithm were analyzed against the actual timing and intensity of lockdown and travel restrictions. Early implementations of the actual lockdown and travel restriction policies, usually at the time of local index case were associated with less burden of COVID-19. In contrast, our agent suggested to initiate at least minimal intensity of lockdown or travel restriction even before or on the day of the index case in each country and territory. In addition, the agent mostly recommended a combination of lockdown and travel restrictions and higher intensity policies than the policies implemented by governments, but did not always encourage rapid full lockdown and full border closures. The limitation of this study was that it was done with incomplete data due to the emerging COVID-19 epidemic, inconsistent testing and reporting. In addition, our research focuses only on population health benefits by controlling the spread of COVID-19 without balancing the negative impacts of economic and social consequences. Interpretation Compared to actual government implementation, our algorithm mostly recommended earlier intensity of lockdown and travel restrictions. Reinforcement learning may be used as a decision support tool for implementation of public health interventions during COVID-19 and future pandemics.Peer reviewe

    Predicting the need for intubation in the first 24 h after critical care admission using machine learning approaches

    Get PDF
    Early and accurate prediction of the need for intubation may provide more time for preparation and increase safety margins by avoiding high risk late intubation. This study evaluates whether machine learning can predict the need for intubation within 24 h using commonly available bedside and laboratory parameters taken at critical care admission. We extracted data from 2 large critical care databases (MIMIC-III and eICU-CRD). Missing variables were imputed using autoencoder. Machine learning classifiers using logistic regression and random forest were trained using 60% of the data and tested using the remaining 40% of the data. We compared the performance of logistic regression and random forest models to predict intubation in critically ill patients. After excluding patients with limitations of therapy and missing data, we included 17,616 critically ill patients in this retrospective cohort. Within 24 h of admission, 2,292 patients required intubation, whilst 15,324 patients were not intubated. Blood gas parameters (PaO2, PaCO2, HCO3-), Glasgow Coma Score, respiratory variables (respiratory rate, SpO2), temperature, age, and oxygen therapy were used to predict intubation. Random forest had AUC 0.86 (95% CI 0.85-0.87) and logistic regression had AUC 0.77 (95% CI 0.76-0.78) for intubation prediction performance. Random forest model had sensitivity of 0.88 (95% CI 0.86-0.90) and specificity of 0.66 (95% CI 0.63-0.69), with good calibration throughout the range of intubation risks. The results showed that machine learning could predict the need for intubation in critically ill patients using commonly collected bedside clinical parameters and laboratory results. It may be used in real-time to help clinicians predict the need for intubation within 24 h of intensive care unit admission.Peer reviewe

    Evaluating the Impact of Social Determinants on Health Prediction in the Intensive Care Unit

    Full text link
    Social determinants of health (SDOH) -- the conditions in which people live, grow, and age -- play a crucial role in a person's health and well-being. There is a large, compelling body of evidence in population health studies showing that a wide range of SDOH is strongly correlated with health outcomes. Yet, a majority of the risk prediction models based on electronic health records (EHR) do not incorporate a comprehensive set of SDOH features as they are often noisy or simply unavailable. Our work links a publicly available EHR database, MIMIC-IV, to well-documented SDOH features. We investigate the impact of such features on common EHR prediction tasks across different patient populations. We find that community-level SDOH features do not improve model performance for a general patient population, but can improve data-limited model fairness for specific subpopulations. We also demonstrate that SDOH features are vital for conducting thorough audits of algorithmic biases beyond protective attributes. We hope the new integrated EHR-SDOH database will enable studies on the relationship between community health and individual outcomes and provide new benchmarks to study algorithmic biases beyond race, gender, and age

    Automatic mandibular canal detection using a deep convolutional neural network

    Get PDF
    The practicability of deep learning techniques has been demonstrated by their successful implementation in varied fields, including diagnostic imaging for clinicians. In accordance with the increasing demands in the healthcare industry, techniques for automatic prediction and detection are being widely researched. Particularly in dentistry, for various reasons, automated mandibular canal detection has become highly desirable. The positioning of the inferior alveolar nerve (IAN), which is one of the major structures in the mandible, is crucial to prevent nerve injury during surgical procedures. However, automatic segmentation using Cone beam computed tomography (CBCT) poses certain difficulties, such as the complex appearance of the human skull, limited number of datasets, unclear edges, and noisy images. Using work-in-progress automation software, experiments were conducted with models based on 2D SegNet, 2D and 3D U-Nets as preliminary research for a dental segmentation automation tool. The 2D U-Net with adjacent images demonstrates higher global accuracy of 0.82 than naïve U-Net variants. The 2D SegNet showed the second highest global accuracy of 0.96, and the 3D U-Net showed the best global accuracy of 0.99. The automated canal detection system through deep learning will contribute significantly to efficient treatment planning and to reducing patients’ discomfort by a dentist. This study will be a preliminary report and an opportunity to explore the application of deep learning to other dental fields.Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore