92 research outputs found

    Connexins in leukocytes: shuttling messages?

    Get PDF
    Gap junctions, formed by the connexin (Cx) protein family, are intercellular channels that permit the cytoplasmic exchange of ions and small metabolites between neighboring cells, a process called gap junction intercellular communication (GJIC). These channels possess unique properties, including distinctive permeabilities for various signaling molecules, which depend on the connexin member(s) that form them. Importantly, GJIC must be properly controlled as its misregulation might contribute to diseases. Morphological and functional studies have revealed ‘gap junction-like' structures and cell-to-cell communication involving cells of the immune system. The connexins involved in such contacts have been partially identified in recent years. This review focuses on the potential physiological roles of gap junctions in the development and recruitment of leukocytes as well as in the regulation of the immune response. Furthermore, the importance of GJIC in immuno-inflammatory pathologies is illustrated in atherosclerosi

    Regulation of cardiovascular connexins by mechanical forces and junctions

    Get PDF
    Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexin

    The natural cardioprotective particle HDL modulates connexin43 gap junction channels

    Get PDF
    Aims High-density lipoprotein (HDL) is known for its cardioprotective properties independent from its cholesterol transport activity. These properties are mediated by activation of kinases such as protein kinase C (PKC). Connexin43 (Cx43) is a gap junction protein present in ventricular cardiomyocytes. PKC-dependent phosphorylation modifies Cx43 gap junction channel properties and is involved in cardioprotection. We hypothesized that cardioprotective properties of HDL may be mediated in part by affecting Cx43 gap junction channels. Methods and results Neonatal rat cardiomyocytes were treated with HDL and Cx43 phosphorylation was evaluated by western blotting and immunofluorescence. We found that HDL promoted phosphorylation of Cx43 with a maximal induction at 5 min, which was inhibited by pre-treatment with various PKC inhibitors. Sphingosine-1-phosphate (S1P), a component of HDL, induced effects that were similar to those of HDL. These compounds significantly reduced diffusion of fluorescent dye among cardiomyocytes (∼50%) which could be prevented by PKC inhibition. As observed during optical recordings of transmembrane voltage, HDL and S1P depressed impulse conduction only minimally (<5%). Moreover, 5 min of HDL and S1P treatment at the onset of reperfusion significantly reduced infarct size (∼50%) in response to 30 min ischaemia in ex vivo experiments. Conclusion Short-term treatment with HDL or S1P induces phosphorylation of Cx43 by a PKC-dependent pathway. HDL-induced phosphorylation of Cx43 reduced the diffusion of large tracer molecules between cells, whereas impulse conduction was maintained. Moreover, 5 min treatment with HDL confers cardioprotection against ischaemia/reperfusion injury. These results link Cx43 for the first time to the short-term cardioprotective effects of HD

    Connexin expression in cultured neonatal rat myocytes reflects the pattern of the intact ventricle

    Get PDF
    Objective: Primary cultures of neonatal rat ventricular myocytes have become a widely used model to examine a variety of functional, physiological and biochemical cardiac properties. In the adult rat, connexin43 (Cx43) is the major gap junction protein present in the working myocardium. In situ hybridization studies on developing rats, however, showed that Cx40 mRNA displays a dynamic and heterogeneous pattern of expression in the ventricular myocardium around birth. The present studies were performed to examine the expression pattern of the Cx40 protein in neonatal rat heart, and to examine the connexins present in cultures of ventricular myocytes obtained from those hearts. Methods: Cryosections were made of hearts of 1-day-old Wistar rats. Cultures of ventricular myocytes obtained from these hearts by enzymatic dissociation were seeded at various densities (to obtain >75, ∼50%, and 75% confluency) Cx43 and Cx40 immunoreactivity could be detected. In contrast to Cx43 immunolabeling which showed a homogeneous distribution pattern, Cx40 staining was heterogeneous, i.e. in some clusters of cells abundant labeling was present whereas in others no Cx40 staining could be detected. The pattern of Cx43 immunoreactivity was not altered by the culture density. In contrast, in isolated ventricular myocytes cultured at low density (<25% confluency) the relative number of cell—cell interfaces that were Cx40-immunopositive decreased as compared to high density cultures (35 vs. 70%). Western blots did not reveal significant differences in the level of Cx40 and Cx43 expression at different culture densities. Conclusions: These results show that cultured ventricular myocytes retained typical features of the native neonatal rat ventricular myocardium with regard to their composition of gap junctions. This implicates that these cultures may serve as a good model for studying short-term and long-term regulation of cardiac gap junction channel expression and functio

    KLF4-Induced Connexin40 Expression Contributes to Arterial Endothelial Quiescence

    Get PDF
    Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis

    Statins (HMG-CoA reductase inhibitors) reduce CD40 expression in human vascular cells

    Get PDF
    Objective: HMG-CoA reductase inhibitors (statins) possess anti-inflammatory and immunomodulatory properties that are independent of their lipid-lowering action. As the CD40-CD40L signaling pathway is implicated in the modulation of inflammatory responses between vascular cells, involving adhesion molecules, pro-inflammatory cytokines, chemokines, we sought to investigate the potential role of statins in regulating the expression of CD40. Methods and Results: Using Western blot, flow cytometry and immunohistochemistry analyses, we observed that four different statins reduced IFN-γ-induced CD40 expression in human vascular cells (endothelial cells, smooth muscle cells, macrophages and fibroblasts). This effect was dose-dependent (from 5 μM to 80 nM) and reversed by addition of l-mevalonate. Activation of vascular cells by human recombinant CD40L, as measured by ELISA for IL-6, IL-8 and MCP-1, was strongly reduced when cells were treated with statins. Immunostaining of human carotid atherosclerotic lesions of patients subjected to statin treatment revealed less CD40 expression on a ‘per vascular cell' basis compared to control patients. Although many pleiotropic effects of statins are mediated by nitric oxide synthase (NOS)- or peroxisome proliferator-activated receptor (PPAR)-dependent signaling pathways, we observed similar statin-induced reduction of CD40 expression using NOS inhibitors or different PPAR ligands. Conclusion: Statins decrease CD40 expression and CD40-related activation of vascular cells. These effects are partially reversed by the HMG-CoA reductase product l-mevalonate and are mediated by NOS- or PPAR-dependent pathways. Altogether, these findings provide mechanistic insight into the beneficial effects of statins on atherogenesis. They also provide a scientific rationale for the use of statins as immunomodulators after organ transplantatio

    Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation

    Get PDF
    Connexins are a large family of proteins that form gap junction channels allowing exchange of ions and small metabolites between neighboring cells. They have been implicated in pathological processes such as tumourigenesis in which they may act as tumour suppressors. A polymorphism in the human connexin37 (Cx37) gene (C1019T), resulting in a non-conservative amino acid change in the regulatory C-terminus (CT) of the Cx37 protein (P319S) has been suggested to be implicated in predisposition to angiosarcomas. In this study, we have used communication-deficient HeLa and SK-HEP-1 cells transfected with Cx37-319S, Cx37-319P or empty vector. We showed that the expression of Cx37-319P limited proliferation of HeLa and SK-HEP-1 cells, whereas Cx37-319S expression was without effect. Using an in vitro kinase assay, we demonstrated phosphorylation of Cx37 CT by glycogen synthase kinase-3 (GSK-3), a kinase known to be implicated in cell proliferation and cancer. GSK-3-induced phosphorylation was associated with reduced gap junctional intercellular communication (GJIC) as measured by microinjection of the tracer neurobiotin. Inhibition of GSK-3 by LiCl or SB415286 reduced phosphorylation of Cx37-319P and increased GJIC. This latter effect on GJIC involved the beta and not the alpha isoform of GSK-3. In contrast, GSK-3 inhibitors were without effect on HeLa cells expressing Cx37-319S. In conclusion, our data indicate functional effects of the Cx37 C1019T polymorphism on GJIC that might contribute to tumour cell growt
    • …
    corecore