112 research outputs found

    Relationship between Tumor DNA Methylation Status and Patient Characteristics in African-American and European-American Women with Breast Cancer

    Get PDF
    Aberrant DNA methylation is critical for development and progression of breast cancer. We investigated the association of CpG island methylation in candidate genes and clinicopathological features in 65 African-American (AA) and European-American (EA) breast cancer patients. Quantitative methylation analysis was carried out on bisulfite modified genomic DNA and sequencing (pyrosequencing) for promoter CpG islands of p16, ESR1, RASSF1A, RARΞ²2, CDH13, HIN1, SFRP1 genes and the LINE1 repetitive element using matched paired non-cancerous and breast tumor specimen (32 AA and 33 EA women). Five of the genes, all known tumor suppressor genes (RASSF1A, RARΞ²2, CDH13, HIN1 and SFRP1), were found to be frequently hypermethylated in breast tumor tissues but not in the adjacent non-cancerous tissues. Significant differences in the CDH13 methylation status were observed by comparing DNA methylation between AA and EA patients, with more obvious CDH13 methylation differences between the two patient groups in the ER- disease and among young patients (age<50). In addition, we observed associations between CDH13, SFRP1, and RASSF1A methylation and breast cancer subtypes and between SFRP1 methylation and patient's age. Furthermore, tumors that received neoadjuvant therapy tended to have reduced RASSF1A methylation when compared with chemotherapy naΓ―ve tumors. Finally, Kaplan Meier survival analysis showed a significant association between methylation at 3 loci (RASSF1A, RARΞ²2 and CDH13) and reduced overall disease survival. In conclusion, the DNA methylation status of breast tumors was found to be significantly associated with clinicopathological features and race/ethnicity of the patients

    FGF8 isoform b expression in human prostate cancer.

    Get PDF
    Overexpression of fibroblast growth factor 8 (FGF8) mRNA has been previously described in prostate cancer. Of its four isoforms, FGF8b is thought to be the most important in carcinogenesis. We hypothesised that immunodetection of FGF8b in archival prostate cancer specimens is of potential prognostic value. Using a selected cohort of prostate tumours from transurethral (n=30) and radical prostatectomies (n=59), an optimised protocol for FGF8b immunoreactivity was used to corroborate expression with clinical parameters. No expression was observed in benign prostates (n=10). In prostate cancer, immunoreactivity was localised to the malignant epithelium with weak signals in the adjacent stroma. Expression of FGF8b in stage T1 and T2 cancers were 40 and 67%, respectively. In contrast, FGF8b expression was present in 94% of T3 and 100% of T4 cancers. By histological grade, FGF8b was found in 41% of low-grade cancers (Gleason score 4-6), 60% of intermediate-grade cancers (Gleason score 7 and 92% of high-grade cancers (Gleason score 8-10). The intensity of expression was significantly associated with stage (P=0.0004) and grade (P<0.0001) of disease. We further hypothesised that FGF8b overexpression resulted from enhanced transcription and translation rather than from abnormalities involving the FGF8 gene locus. This was tested by means of fluorescent in situ hybridisation in 20 cancer specimens to map the FGF8 gene locus. FGF8 gene copy number in benign and malignant nuclei was found to be similar (2.33+/-0.57 and 2.0+/-0.81, respectively P=0.51). Based on these findings, we propose a multicentre study on cohorts of patients to further evaluate FGF8b as a potential prognostic marker in prostate cancer

    Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease.

    Get PDF
    BACKGROUND: The fibroblast growth factor (FGF) axis is an important mitogenic stimulus in prostate carcinogenesis. We have previously reported that transcript level of human similar expression to FGF (hSef), a key regulator of this pathway, is downregulated in clinical prostate cancer. In this study we further analysed the role of hSef in prostate cancer. METHODS: hSef function was studied in in vitro and in vivo prostate cancer models using stable over-expression clones. Protein expression of hSef was studied in a comprehensive tissue microarray. RESULTS: Stable over-expression of hSef resulted in reduced in vitro cancer cell proliferation, migration and invasive potential. In an in vivo xenograft model, the expression of hSef significantly retarded prostate tumour growth as compared with empty vector (P=0.03) and non-transfected (P=0.0001) controls. Histological examination further showed a less invasive tumour phenotype and reduced numbers of proliferating cells (P=0.0002). In signalling studies, hSef inhibited FGF-induced ERK phosphorylation, migration to the nucleus and activation of a reporter gene. Constitutively active Ras, however, was able to reverse these effects, suggesting that hSef exerts an effect either above or at the level of Ras in prostate cancer cells. In a large tissue microarray, we observed a significant loss of hSef protein in high-grade (P<0.0001) and metastatic (P<0.0001) prostate cancer. CONCLUSIONS: Considered together, the role of hSef in attenuating FGF signalling and evidence of downregulation in advanced tumours argue strongly for a tumour suppressor function in human prostate cancer

    Discovery of Novel Hypermethylated Genes in Prostate Cancer Using Genomic CpG Island Microarrays

    Get PDF
    BACKGROUND: Promoter and 5' end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. CONCLUSIONS/SIGNIFICANCE: This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer

    Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression

    Get PDF
    Aberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to ARreactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP. From the set of genes upregulated in CaP, FKBP52, an AR co-chaperone, was selected for further analysis. Expression of FKBP52 was positively correlated with that of c-Myc. The functional cross-talk between c-Myc and FKBP52 was established using c-Myc specific-siRNA to LNCaP cells that resulted in reduction of FKBP52. A non-canonical E-box sequence housing a putative c-Myc binding site was detected on the FKBP4 promoter using in silico search. LNCaP cells transfected with the FKBP52 promoter cloned in pGL3 basic showed increased luciferase activity which declined considerably when the promoter-construct was co-transfected with c-Myc specific-siRNA. ChIP-PCR confirmed the binding of c-Myc with the conserved E-box located in the FKBP52 promoter. c-Myc downregulation concomitantly affected expression of FGF8. Since expression of FGF8 is controlled by AR, our study unveiled a novel functional axis between c-Myc, AR and FGF8 operating through FKBP52

    Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity

    Get PDF
    AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/βˆ’)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/βˆ’) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3Ξ² (GSK3Ξ²), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/βˆ’) mice remained depressed for up to 120Β min, whereas glucose levels in wild-type mice began to recover after approximately 30Β min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/βˆ’) mice. Enhanced glucose uptake was observed both in Pten(+/βˆ’) myocytes and in skeletal muscle of Pten(+/βˆ’) mice by PET. PKB and GSK3Ξ² phosphorylation was enhanced and prolonged in Pten(+/βˆ’) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/βˆ’) mice

    Molecular profiling of cervical cancer progression

    Get PDF
    Most cancer patients die of metastatic or recurrent disease, hence the importance to identify target genes upregulated in these lesions. Although a variety of gene signatures associated with metastasis or poor prognosis have been identified in various cancer types, it remains a critical problem to identify key genes as candidate therapeutic targets in metastatic or recurrent cancer. The aim of our study was to identify genes consistently upregulated in both lymph node micrometastases and recurrent tumours compared to matched primary tumours in human cervical cancer. Taqman Low-Density Arrays were used to analyse matched tumour samples, obtained after laser-capture microdissection of tumour cell islands for the expression of 96 genes known to be involved in tumour progression. Immunohistochemistry was performed for a panel of up- and downregulated genes. In lymph node micrometastases, most genes were downregulated or showed expressions equal to the levels found in primary tumours. In more than 50% of lymph node micrometastases studied, eight genes (AKT, BCL2, CSFR1, EGFR1, FGF1, MMP3, MMP9 and TGF-Ξ²) were upregulated at least two-fold. Some of these genes (AKT and MMP3) are key regulators of epithelial–mesenchymal transition in cancer. In recurrent tumours, almost all genes were upregulated when compared to the expression profiles of the matched primary tumours, possibly reflecting their aggressive biological behaviour. The two genes showing a consistent downregulated expression in almost all lymph node metastases and recurrent tumours were BAX and APC. As treatment strategies are very limited for metastatic and recurrent cervical cancer, the upregulated genes identified in this study are potential targets for new molecular treatment strategies in metastatic or recurrent cervical cancer

    FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome

    Get PDF
    This study examines the clinical impact of PTEN genomic deletions using fluorescence in situ hybridisation (FISH) analysis of 107 prostate cancers, with follow-up information covering a period of up to 10 years. Tissue microarray analysis using interphase FISH indicated that hemizygous PTEN losses were present in 42/107 (39%) of prostatic adenocarcinomas, with a homozygous PTEN deletion observed in 5/107 (5%) tumours. FISH analysis using closely linked probes centromeric and telomeric to the PTEN indicated that subband microdeletions accounted for ∼70% genomic losses. Kaplan–Meier survival analysis of PTEN genomic losses (hemizygous and homozygous deletion vs not deleted) identified subgroups with different prognosis based on their time to biochemical relapse after surgery, and demonstrated significant association between PTEN deletion and an earlier onset of disease recurrence (as determined by prostate-specific antigen levels). Homozygous PTEN deletion was associated with a much earlier onset of biochemical recurrence (P=0.002). Furthermore, PTEN loss at the time of prostatectomy correlated with clinical parameters of more advanced disease, such as extraprostatic extension and seminal vesicle invasion. Collectively, our data indicates that haploinsufficiency or PTEN genomic loss is an indicator of more advanced disease at surgery, and is predictive of a shorter time to biochemical recurrence of disease
    • …
    corecore