7 research outputs found

    Anomalous optical response of graphene on hexagonal boron nitride substrates

    Full text link
    Graphene/hBN heterostructures can be considered as one of the basic building blocks for the next-generation optoelectronics mostly owing to the record-high electron mobilities. However, currently, the studies of the intrinsic optical properties of graphene are limited to the standard substrates (SiO2/Si, glass, quartz) despite the growing interest in graphene/hBN heterostructures. This can be attributed to a challenging task of the determination of hBN's strongly anisotropic dielectric tensor in the total optical response. In this study, we overcome this issue through imaging spectroscopic ellipsometry utilizing simultaneous analysis of hBN's optical response with and without graphene monolayers. Our technique allowed us to retrieve the optical constants of graphene from graphene/hBN heterostructures in a broad spectral range of 250-950 nm. Our results suggest that graphene's absorption on hBN may exceed the one of graphene on SiO2/Si by about 60 %

    Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry

    Get PDF
    Publisher Copyright: © 2021 The Author(s).Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter Dp < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and b-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m_3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semicontinuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.Peer reviewe

    Anomalous optical response of graphene on hexagonal boron nitride substrates

    No full text
    Two-dimensional materials look poised to revolutionize information and communication technologies. Here, the authors leveraged spatially resolved ellipsometry to engineer the optical absorption of graphene on hexagonal boron nitride substrates, thereby disclosing effective solutions for flexible optoelectronics

    Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method

    Get PDF
    Ions enhance the formation rate of atmospheric aerosol particles, which play an important role in Earth's radiative balance. Ion-induced nucleation involves the stepwise accretion of neutral monomers onto a molecular cluster containing an ion, which helps to stabilize the cluster against evaporation. Although theoretical frameworks exist to calculate the collision rate coefficients between neutral molecules and ions, they need to be experimentally confirmed, ideally under atmospherically relevant conditions of around 1000 ion pairs cm(-3). Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we have measured the collision rate coefficients between neutral iodic acid (HIO3) monomers and charged iodic acid molecular clusters containing up to 11 iodine atoms. Three methods were analytically derived to calculate ion-polar molecule collision rate coefficients. After evaluation with a kinetic model, the 50% appearance time method is found to be the most robust. The measured collision rate coefficient, averaged over all iodine clusters, is (2.4 +/- 0.8)x10(-9 )cm(3) s(-1), which is close to the expectation from the surface charge capture theory.Peer reviewe
    corecore