477 research outputs found

    AlN/AlGaN HEMTs on AlN substrate for stable high-temperature operation

    Get PDF
    We demonstrate an AlN/AlGaN high-electron-mobility transistor (HEMT) fabricated on a free-standing AlN substrate. A metal stack, composed of Zr/Al/Mo/Au, was found to show low contact resistivity for source and drain ohmic contacts. The fabricated AlN/AlGaN HEMT exhibited a maximum drain current of 38 mA/mm with a threshold voltage of -3.4 V. Negligible drain current degradation was observed at temperatures from 300 to 573 K, emonstrating that our AlN/AlGaN approach on an AlN substrate is promising for stable high-temperature operation

    The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf

    Get PDF
    We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26±\pm0.05) G-dwarf (T_eff = 5430±\pm70 K and log g = 4.48±\pm0.09), based on observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2m telescope. High-spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint companions near the host star, and the false positive probability of this target is found to be <10610^{-6} using the open source vespa code. A joint analysis of transit light curves from K2 and additional ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88m telescope gives the orbital period of P = 8.266902±\pm0.000070 days and consistent transit depths of Rp/R0.035R_p/R_\star \sim 0.035 or (Rp/R)20.0012(R_p/R_\star)^2 \sim 0.0012. The transit depth corresponds to a planetary radius of Rp=3.590.39+0.44RR_p = 3.59_{-0.39}^{+0.44} R_{\oplus}, indicating that EPIC 211525389 b is a short-period Neptune-sized planet. Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3\sigma\ upper limit of 90 M(0.00027M)M_{\oplus} (0.00027 M_{\odot}) on the mass of EPIC 211525389 b, confirming its planetary nature. We expect this planet, newly named K2-105 b, to be the subject of future studies to characterize its mass, atmosphere, spin-orbit (mis)alignment, as well as investigate the possibility of additional planets in the system.Comment: 11 pages, 9 figures, 4 tables, PASJ accepte

    The K2-ESPRINT Project. I. Discovery of the Disintegrating Rocky Planet K2-22b with a Cometary Head and Leading Tail

    Get PDF
    We present the discovery of a transiting exoplanet candidate in the K2 Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable transit depths, ranging from \sim0\% to 1.3\%, are suggestive of a planet that is disintegrating via the emission of dusty effluents. We characterize the host star as an M-dwarf with Teff3800T_{\rm eff} \simeq 3800 K. We have obtained ground-based transit measurements with several 1-m class telescopes and with the GTC. These observations (1) improve the transit ephemeris; (2) confirm the variable nature of the transit depths; (3) indicate variations in the transit shapes; and (4) demonstrate clearly that at least on one occasion the transit depths were significantly wavelength dependent. The latter three effects tend to indicate extinction of starlight by dust rather than by any combination of solid bodies. The K2 observations yield a folded light curve with lower time resolution but with substantially better statistical precision compared with the ground-based observations. We detect a significant "bump" just after the transit egress, and a less significant bump just prior to transit ingress. We interpret these bumps in the context of a planet that is not only likely streaming a dust tail behind it, but also has a more prominent leading dust trail that precedes it. This effect is modeled in terms of dust grains that can escape to beyond the planet's Hill sphere and effectively undergo `Roche lobe overflow,' even though the planet's surface is likely underfilling its Roche lobe by a factor of 2.Comment: 22 pages, 16 figures. Final version accepted to Ap

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15

    Get PDF
    We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward-scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions (SED) of such systems, comprising an optically thick outer disk with an inner truncation radius of ~46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 Jupiter masses on companions at separations outside of 0.1" and of 13 Jupiter masses outside of 0.2". Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letters. Minor change to Figure

    Evidence for Spin–Orbit Alignment in the TRAPPIST-1 System

    Get PDF
    In an effort to measure the Rossiter–McLaughlin effect for the TRAPPIST-1 system, we performed high-resolution spectroscopy during transits of planets e, f, and b. The spectra were obtained with the InfraRed Doppler spectrograph on the Subaru 8.2 m telescope, and were supplemented with simultaneous photometry obtained with a 1 m telescope of the Las Cumbres Observatory Global Telescope. By analyzing the anomalous radial velocities, we found the projected stellar obliquity to be λ = 1 ± 28° under the assumption that the three planets have coplanar orbits, although we caution that the radial-velocity data show correlated noise of unknown origin. We also sought evidence for the expected deformations of the stellar absorption lines, and thereby detected the "Doppler shadow" of planet b with a false-alarm probability of 1.7%. The joint analysis of the observed residual cross-correlation map including the three transits gave λ = 19_(-15)^(+13)°. These results indicate that the the TRAPPIST-1 star is not strongly misaligned with the common orbital plane of the planets, although further observations are encouraged to verify this conclusion

    The Structure of Pre-transitional Protoplanetary Disks I: Radiative Transfer Modeling of the Disk+Cavity in the PDS 70 system

    Get PDF
    Through detailed radiative transfer modeling, we present a disk+cavity model to simultaneously explain both the SED and Subaru H-band polarized light imaging for the pre-transitional protoplanetary disk PDS 70. Particularly, we are able to match not only the radial dependence, but also the absolute scale, of the surface brightness of the scattered light. Our disk model has a cavity 65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and a small residual inner disk which produces a weak but still optically thick NIR excess in the SED. To explain the contrast of the cavity edge in the Subaru image, a factor of ~1000 depletion for the sub-micron-sized dust inside the cavity is required. The total dust mass of the disk may be on the order of 1e-4 M_sun, only weakly constrained due to the lack of long wavelength observations and the uncertainties in the dust model. The scale height of the sub-micron-sized dust is ~6 AU at the cavity edge, and the cavity wall is optically thick in the vertical direction at H-band. PDS 70 is not a member of the class of (pre-)transitional disks identified by Dong et al. (2012), whose members only show evidence of the cavity in the millimeter-sized dust but not the sub-micron-sized dust in resolved images. The two classes of (pre-)transitional disks may form through different mechanisms, or they may just be at different evolution stages in the disk clearing process.Comment: 28 pages (single column), 7 figures, 1 table, ApJ accepte

    Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius

    Full text link
    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our HH-band data, which clearly exhibits a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14 ^{\circ}, respectively. The disk is asymmetric, with one dip located at P.A.s of 85\sim85^{\circ}. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.Comment: 21 pages, 3 figures, published 2012 November 7 by ApJL, typo correcte

    Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    Full text link
    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r~46AU, our observations reveal the presence of scattered light components as close as 0.2" (~28AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.5" (~70AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h~0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.Comment: 8 pages, 5 figures, ApJL in press, typo correcte
    corecore