79 research outputs found
Nanometric TiO 2 as NBBs for functional organic-inorganic hybrids with efficient interfacial charge transfer
International audienceThe purpose of this work is to establish a fabrication method for new electronic materials: organic-inorganic p-MAPTMS / titanium-oxo-alkoxy hybrids. The size-selected 5.2-nm TiO 2 nanoparticles (Nano Building Blocks-NBB) are generated in a sol-gel reactor with turbulent fluids micromixing. The surface exchange between propoxy and MAPTMS groups under vacuum pumping results in a stable nanoparticulate precursor available for 2-photon laser polymerisation. The hybrids demonstrate quantum yield of photoinduced charges separation 6 % and can steadily trap photoinduced electrons at number density of 6% Ti atoms. The materials are suitable for 3D-microstructuring
Transverse instability and its long-term development for solitary waves of the (2+1)-Boussinesq equation
The stability properties of line solitary wave solutions of the
(2+1)-dimensional Boussinesq equation with respect to transverse perturbations
and their consequences are considered. A geometric condition arising from a
multi-symplectic formulation of this equation gives an explicit relation
between the parameters for transverse instability when the transverse
wavenumber is small. The Evans function is then computed explicitly, giving the
eigenvalues for transverse instability for all transverse wavenumbers. To
determine the nonlinear and long time implications of transverse instability,
numerical simulations are performed using pseudospectral discretization. The
numerics confirm the analytic results, and in all cases studied, transverse
instability leads to collapse.Comment: 16 pages, 8 figures; submitted to Phys. Rev.
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
Growth of (110) Diamond using pure Dicarbon
We use a density-functional based tight-binding method to study diamond
growth steps by depositing dicarbon species onto a hydrogen-free diamond (110)
surface. Subsequent C_2 molecules are deposited on an initially clean surface,
in the vicinity of a growing adsorbate cluster, and finally, near vacancies
just before completion of a full new monolayer. The preferred growth stages
arise from C_2n clusters in near ideal lattice positions forming zigzag chains
running along the [-110] direction parallel to the surface. The adsorption
energies are consistently exothermic by 8--10 eV per C_2, depending on the size
of the cluster. The deposition barriers for these processes are in the range of
0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies
are smaller by 3 eV, but diffusion to more stable positions is feasible. We
also perform simulations of the diffusion of C_2 molecules on the surface in
the vicinity of existing adsorbate clusters using an augmented Lagrangian
penalty method. We find migration barriers in excess of 3 eV on the clean
surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier
heights and pathways indicate that the growth from gaseous dicarbons proceeds
either by direct adsorption onto clean sites or after migration on top of the
existing C_2n chains.Comment: 8 Pages, 7 figure
Radioheliograph observations of microwave bursts with zebra structures
The so-called zebra structures in radio dynamic spectra, specifically their
frequencies and frequency drifts of emission stripes, contain information on
the plasma parameters in the coronal part of flare loops. This paper presents
observations of zebra structures in a microwave range. Dynamic spectra were
recorded by Chinese spectro-polarimeters in the frequency band close to the
working frequencies of the Siberian Solar Radio Telescope. The emission sources
are localized in the flare regions, and we are able to estimate the plasma
parameters in the generation sites using X-ray data. The interpretation of the
zebra structures in terms of the existing theories is discussed. The conclusion
has been arrived that the preferred generation mechanism of zebra structures in
the microwave range is the conversion of plasma waves to electromagnetic
emission on the double plasma resonance surfaces distributed across a flare
loop.Comment: 18 pages, 7 figure
- …