4,670 research outputs found

    Limits on nu_e and anti-nu_e disappearance from Gallium and reactor experiments

    Full text link
    The deficit observed in the Gallium radioactive source experiments is interpreted as a possible indication of the disappearance of electron neutrinos. In the effective framework of two-neutrino mixing we obtain sin22ϑ0.03\sin^{2}2\vartheta \gtrsim 0.03 and Δm20.1eV2\Delta{m}^{2} \gtrsim 0.1 \text{eV}^{2}. The compatibility of this result with the data of the Bugey and Chooz reactor short-baseline antineutrino disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02sin22ϑ0.080.02 \lesssim \sin^{2}2\vartheta \lesssim 0.08 and Δm21.8eV2\Delta{m}^{2} \approx 1.8 \text{eV}^{2}, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analyses of Bugey and Chooz data, of Gallium and Bugey data, and of Gallium, Bugey, and Chooz data.Comment: 21 pages. Final version to be published in Phys. Rev.

    Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

    Get PDF
    We calculate the nucleon form factors G_A and G_P of the isovector axial-vector current and the pion-nucleon form factor G_piN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p^4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a_1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G_A. The inclusion of the axial-vector meson results in an improved description of the experimental data for G_A, while the contribution to G_P is small.Comment: 21 pages, 9 figures, REVTeX

    Affleck-Dine (Pseudo)-Dirac Neutrinogenesis

    Full text link
    We consider the Affleck-Dine mechanism for leptogenesis in the minimal MSSM with Dirac or Pseudo-Dirac neutrinos. The rolling of scalars along D-flat directions generates a left-right asymmetry in the sneutrino sector, only the left part of which is transferred to a baryon asymmetry via sphaleron transitions. In the pure Dirac case the baryon asymmetry of the Universe is thus mirrored by an equal and opposite asymmetry in the leptons. The mechanism is also found to work when the neutrinos are pseudo-Dirac. No additional field needs to be added to the MSSM other than the right-handed neutrino.Comment: Latex, 3 figures, 1 bib file, 2 added reference, 1 minor correction, 1 added commen

    On the choice of temperature profile at solving the heat conduction equation in spherical coordinates by the method of thermal balance integral

    Get PDF
    Solutions of the heat conduction equation for a sphere and an area limited from within by a spherical cavity have been obtained by means of the integrated method. The influence of the choice of the temperature profile on efficiency of the approached analytical solution is shown. The variant of solution specification in transitive area is offered

    Superheavy dark matter and ultrahigh energy cosmic rays

    Full text link
    The phase of inflationary expansion in the early universe produces superheavy relics in a mass window between 10^{12} GeV and 10^{14} GeV. Decay or annihilation of these superheavy relics can explain the observed ultrahigh energy cosmic rays beyond the Greisen-Zatsepin-Kuzmin cutoff. We emphasize that the pattern of cosmic ray arrival directions with energies beyond 20 EeV will decide between the different proposals for the origin of ultrahigh energy cosmic rays.Comment: Based on an invited talk given by RD at Theory Canada 1, Vancouver, June 2-5, 200

    Detection of Giant Radio Pulses from the Pulsar PSR B0656+14

    Full text link
    Giant pulses (GPs) have been detected from the pulsar PSR B0656+14. A pulse that is more intense than the average pulse by a factor of 120 is encountered approximately once in 3000 observed periods of the pulsar. The peak flux density of the strongest pulse, 120 Jy, is a factor of 630 higher than that of the average pulse. The GP energy exceeds the energy of the average pulse by up to a factor of 110, which is comparable to that for other known pulsars with GPs, including the Crab pulsar and the millisecond pulsar PSR B1937+21. The giant pulses are a factor of 6 narrower than the average pulse and are clustered at the head of the average pulse. PSR B0656+14 along with PSR B0031-07, PSR B1112+50, and PSR J1752+2359 belong to a group of pulsars that differ from previously known ones in which GPs have been detected without any extremely strong magnetic field on the light cylinder.Comment: 10 pages, 3 figures, 1 table; originally published in Russian in Pis'ma Astron. Zh., 2006, v.32, 650; translated by George Rudnitskii; the English version will be appear in Astronomy Letter
    corecore