813 research outputs found

    Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Full text link
    This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (>30 TeV). It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.Comment: 4 pages, 5 figures; proceedings of the 19th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2016

    The Effect of Atmospheric Pollution on Building Materials in the Urban Environment

    Get PDF
    Nowadays atmospheric pollution affects not only the urban environment in general, but building materials, which leads to their corrosion, in particular. The article discusses the regularities of the adhesion process of particulate matter (dust) on the vertical surfaces of buildings and structures, which are made of various building materials. On the basis of experimental studies, regression dependences of the adhesion of urban dust on different vertical surfaces from random determining factors were obtained. Thus, by studying the regularities of pollution of urban environment objects, made of various building materials, it is possible to achieve their preservation, since they demonstrate the architectural and design features of various historical periods of the country's development

    Estimation of intraband and interband relative coupling constants from temperature dependences of the order parameter for two-gap superconductors

    Full text link
    We present temperature dependences of the large and the small superconducting gaps measured directly by SnS-Andreev spectroscopy in various Fe-based superconductors and MgB2_2. The experimental Ξ”L,S(T)\Delta_{L,S}(T) are well-fitted with a two-gap model based on Moskalenko and Suhl system of equations (supplemented with a BCS-integral renormalization). From the the fitting procedure, we estimate the key attribute of superconducting state \textemdash relative electron-boson coupling constants and eigen BCS-ratios for both condensates. Our results evidence for a driving role of a strong intraband coupling in the bands with the large gap, whereas interband coupling is rather weak for all the superconductors under study.Comment: 7 pages, 5 figures, accepted to J. Supercond. Novel Mag

    Hamiltonian formalism in Friedmann cosmology and its quantization

    Full text link
    We propose a Hamiltonian formalism for a generalized Friedmann-Roberson-Walker cosmology model in the presence of both a variable equation of state (EOS) parameter w(a)w(a) and a variable cosmological constant Ξ›(a)\Lambda(a), where aa is the scale factor. This Hamiltonian system containing 1 degree of freedom and without constraint, gives Friedmann equations as the equation of motion, which describes a mechanical system with a variable mass object moving in a potential field. After an appropriate transformation of the scale factor, this system can be further simplified to an object with constant mass moving in an effective potential field. In this framework, the Ξ›\Lambda cold dark matter model as the current standard model of cosmology corresponds to a harmonic oscillator. We further generalize this formalism to take into account the bulk viscosity and other cases. The Hamiltonian can be quantized straightforwardly, but this is different from the approach of the Wheeler-DeWitt equation in quantum cosmology.Comment: 7 pages, no figure; v2: matches the version accepted by PR

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ эмиссионных процСссов Π² Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠΉ элСктронно-ΠΈΠΎΠ½Π½ΠΎΠΉ систСмС с Ρ…ΠΎΠ»ΠΎΠ΄Π½Ρ‹ΠΌ ΠΊΠ°Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈΠΎΠ½ΠΎΠ²

    Get PDF
    Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρƒ модСль Π²ΠΈΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-Ρ–ΠΎΠ½Π½ΠΎΡ— систСми низького тиску Π· Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΈΠΌ ΠΊΠ°Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚Π° Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΈΠΌ ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΈΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ Ρ–ΠΎΠ½Ρ–Π², Ρ€ΠΎΠ·ΠΌΡ–Ρ‰Π΅Π½ΠΈΠΌ Π·Π° Π°Π½ΠΎΠ΄ΠΎΠΌ. МодСль основана Π½Π° систСмі ΠΊΡ–Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… Ρ€Ρ–Π²Π½ΡΠ½ΡŒ, які ΠΎΠΏΠΈΡΡƒΡŽΡ‚ΡŒ часову Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΡƒ Ρ–ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… процСсів Π·Π° ΡƒΡ‡Π°ΡΡ‚ΡŽ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π², Ρ–ΠΎΠ½Ρ–Π² Ρ‚Π° Π½Π΅ΠΉΡ‚Ρ€Π°Π»Ρ–Π² після пСрСзарядТСння Ρ–ΠΎΠ½Ρ–Π² Ρƒ плоскому ΠΌΡ–ΠΆΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠΌΡ–ΠΆΠΊΡƒ Ρ– Смісійних процСсів Π½Π° Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π°Ρ…, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ відбиття ΡˆΠ²ΠΈΠ΄ΠΊΠΈΡ… Π°Ρ‚ΠΎΠΌΡ–Π² Π²Ρ–Π΄ ΠΊΠ°Ρ‚ΠΎΠ΄Π° Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π² Π²Ρ–Π΄ Π°Π½ΠΎΠ΄Π°. Числові Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΈ Π΄Π°Π»ΠΈ Π·ΠΌΠΎΠ³Ρƒ виявити Ρ– дослідити Ρ€Π΅ΠΆΠΈΠΌΠΈ нСсамостійного Ρ– самостійного розрядів, Ρ–Π½Ρ–Ρ†Ρ–ΠΉΠΎΠ²Π°Π½ΠΈΡ… Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΡŽ Ρ–Π½ΠΆΠ΅ΠΊΡ†Ρ–Ρ”ΡŽ Ρ–ΠΎΠ½Ρ–Π² Π· Π±ΠΎΠΊΡƒ Π°Π½ΠΎΠ΄Π° ΠΏΡ€ΠΈ тисках Π³Π°Π·Ρƒ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π½ΠΈΠΆΡ‡Π΅ Ρ– Π²ΠΈΡ‰Π΅ дСякого ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ значСння. Для ΠΏΡ–Π΄Ρ‚Ρ€ΠΈΠΌΠΊΠΈ нСсамостійного розряду Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΉ постійно ΠΏΡ€Π°Ρ†ΡŽΡŽΡ‡ΠΈΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ Ρ–ΠΎΠ½Ρ–Π². Π“Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ Ρ–ΠΎΠ½Ρ–Π² ΠΌΠΎΠΆΠ½Π° Π²Ρ–Π΄ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΠΈ після Ρ–Π½Ρ–Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ самостійного розряду, Π°Π»Π΅ Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Ρ…Ρ–Π΄Π½ΠΎΠ³ΠΎ процСсу встановлСння Ρ†ΡŒΠΎΠ³ΠΎ розряду ΠΌΠΎΠΆΠ½Π° скоротити Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½ΡΠΌ Ρ‰Ρ–Π»ΡŒΠ½ΠΎΡΡ‚Ρ– струму Ρ–ΠΎΠ½Ρ–Π² Ρ–Π½ΠΆΠ΅ΠΊΡ†Ρ–Ρ— Ρ– тривалості Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ Ρ–Π½ΠΆΠ΅ΠΊΡ†Ρ–Ρ—. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»ΠΈ Π·Π° ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚ΡΠΌΠΈ Ρ– СнСргіями ΠΏΠΎΡ‚ΠΎΠΊΡ–Π² високоСнСргСтичних частинок, Ρ‰ΠΎ ΠΉΠ΄ΡƒΡ‚ΡŒ Π½Π° Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄ΠΈ, Ρ– Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΡƒ Π·ΠΌΡ–Π½ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΈ Ρ†ΠΈΡ… ΠΏΠΎΡ‚ΠΎΠΊΡ–Π² Ρƒ часі Π² Ρ€Ρ–Π·Π½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ€Ρ–Π·Π°Ρ… ΠΌΡ–ΠΆΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΡ–ΠΆΠΊΡƒ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΄Π°Π½Ρ– Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ ΠΏΡ€ΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π½Ρ– Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… Ρ‚Π° Ρ–ΠΎΠ½Π½ΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π» Ρ– пристроїв Ρ‚Π΅Ρ€ΠΌΠΎΡ–ΠΎΠ½Π½ΠΎΠ³ΠΎ осадТСння ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π², Π·ΠΎΠΊΡ€Π΅ΠΌΠ° для Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΌΠ°Π³Π½Ρ–Ρ‚Π½ΠΈΡ… ΠΌΠ΅Ρ‚Π°ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π².This paper develops the mathematical model of high-voltage low-pressure electron-ion system with a cold cathode and a pulse plasma ion generator disposed behind an anode. The model is based on kinetic equations describing time dynamics of ionization processes in the plane electrode gap with participation of electrons, ions and neutral species after ion charge exchange, as well as electrode emission processes, including reflection of atoms from cathode and electrons from anode. Numerical calculations allowed revealing and studying regimes of non-self-maintained and self-maintained discharges initiated by pulse injection of ions from the anode at gas pressures, accordingly, below and above some critical value. Continuously operating ion generator is needed to maintain the non-self-maintained discharge. The ion generator may be switched off after initiating the self-maintained discharge but duration of transient process of establishing this discharge can be shorted by increase of injected ion current density and injection pulse duration. Velocity and energy distributions of flows of high-energy particles going to the electrodes and time dynamics of variation of these flows are determined in different sections of the electrode gap. The obtained data is used for developing pulse electron and ion sources as well as of devices for thermo-ion deposition of materials in particular for manufacturing electromagnetic metamaterials.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° матСматичСская модСль Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠΉ элСктронно-ΠΈΠΎΠ½Π½ΠΎΠΉ систСмы Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ давлСния с Ρ…ΠΎΠ»ΠΎΠ΄Π½Ρ‹ΠΌ ΠΊΠ°Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹ΠΌ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹ΠΌ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈΠΎΠ½ΠΎΠ², располоТСнным Π·Π° Π°Π½ΠΎΠ΄ΠΎΠΌ. МодСль основана Π½Π° систСмС кинСтичСских ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ ΠΈΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… процСссов с участиСм элСктронов, ΠΈΠΎΠ½ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΎΠ² послС пСрСзарядки ΠΈΠΎΠ½ΠΎΠ² Π² плоском мСТэлСктродном ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ ΠΈ эмиссионных процСссов Π½Π° элСктродах, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ быстрых Π°Ρ‚ΠΎΠΌΠΎΠ² ΠΎΡ‚ ΠΊΠ°Ρ‚ΠΎΠ΄Π° ΠΈ элСктронов ΠΎΡ‚ Π°Π½ΠΎΠ΄Π°. ЧислСнныС расчСты ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Π½Π΅ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ разрядов, ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ ΠΈΠΎΠ½ΠΎΠ² со стороны Π°Π½ΠΎΠ΄Π° ΠΏΡ€ΠΈ давлСниях Π³Π°Π·Π° соотвСтствСнно Π½ΠΈΠΆΠ΅ ΠΈ Π²Ρ‹ΡˆΠ΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ критичСского значСния. Для поддСрТания Π½Π΅ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ разряда Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ постоянно Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠΉ Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΈΠΎΠ½ΠΎΠ². Π“Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΈΠΎΠ½ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ‚ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ послС инициирования ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ разряда, Π½ΠΎ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ процСсса установлСния этого разряда ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ плотности Ρ‚ΠΎΠΊΠ° ΠΈΠ½ΠΆΠ΅ΠΊΡ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΈΠΎΠ½ΠΎΠ² ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ΠΈΠ½ΠΆΠ΅ΠΊΡ†ΠΈΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ распрСдСлСния ΠΏΠΎ скоростям ΠΈ энСргиям ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² высокоэнСргСтичных частиц, ΠΈΠ΄ΡƒΡ‰ΠΈΡ… Π½Π° элСктроды, ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° измСнСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ этих ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сСчСниях мСТэлСктродного ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… элСктронных ΠΈ ΠΈΠΎΠ½Π½Ρ‹Ρ… источников ΠΈ устройств Ρ‚Π΅Ρ€ΠΌΠΎΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ осаТдСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Π² частности для изготовлСния элСктромагнитных ΠΌΠ΅Ρ‚Π°ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ²

    Evidence of a multiple boson emission in Sm1βˆ’x_{1-x}Thx_xOFeAs

    Full text link
    We studied a reproducible fine structure observed in dynamic conductance spectra of Andreev arrays in Sm1βˆ’x_{1-x}Thx_xOFeAs superconductors with various thorium concentrations (x=0.08βˆ’0.3x = 0.08 - 0.3) and critical temperatures Tc=26βˆ’50T_c = 26-50\,K. This structure is unambiguously caused by a multiple boson emission (of the same energy) during the process of multiple Andreev reflections. The directly determined energy of the bosonic mode reaches Ξ΅0=14.8Β±2.2\varepsilon_0 = 14.8 \pm 2.2\,meV for optimal compound. Within the studied range of TcT_c, this energy as well as the large Ξ”L\Delta_L and the small Ξ”S\Delta_S superconducting gaps, nearly scales with critical temperature with the characteristic ratio Ξ΅0/kBTcβ‰ˆ3.2\varepsilon_0/k_BT_c \approx 3.2 (and 2Ξ”L/kBTcβ‰ˆ5.32\Delta_L/k_BT_c \approx 5.3, correspondingly) resembling the expected energy Ξ”L+Ξ”S\Delta_L + \Delta_S of spin resonance and spectral density enhancement in sΒ±s^{\pm} and s++s^{++} states, respectively.Comment: 10 pages, 4 figure
    • …
    corecore