204 research outputs found

    Entanglement of two atomic samples by quantum non-demolition measurements

    Get PDF
    This paper presents simulations of the state vector dynamics for a pair of atomic samples which are being probed by phase shift measurements on an optical beam passing through both samples. We show how measurements, which are sensitive to different atomic components, serve to prepare states which are close to being maximally entangled.Comment: 8 pages, 8 figures, REVTeX

    Unitary Gate Synthesis for Continuous Variable Systems

    Get PDF
    We investigate the synthesis of continuous-variable two-mode unitary gates in the setting where two modes A and B are coupled by a fixed quadratic Hamiltonian H. The gate synthesis consists of a sequence of evolutions governed by Hamiltonian H interspaced by local phase shifts applied to A and B. We concentrate on protocols that require the minimum necessary number of steps and we show how to implement the beam splitter and the two-mode squeezer in just three steps. Particular attention is paid to the Hamiltonian x_A p_B that describes the effective off-resonant interaction of light with the collective atomic spin.Comment: 7 pages, minor text modifications, references adde

    Entanglement of light-shift compensated atomic spin waves with telecom light

    Full text link
    Entanglement of a 795 nm light polarization qubit and an atomic Rb spin wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S = 2.65 \pm 0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infra red (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S = 2.66 \pm 0.09), at 10 ms storage, confirms preservation of memory/light entanglement through the two stages of light qubit frequency conversion.Comment: 5 pages, 3 figure

    Spin Squeezing in the Ising Model

    Get PDF
    We analyze the collective spin noise in interacting spin systems. General expressions are derived for the short time behaviour of spin systems with general spin-spin interactions, and we suggest optimum experimental conditions for the detection of spin squeezing. For Ising models with site dependent nearest neighbour interactions general expressions are presented for the spin squeezing parameter for all times. The reduction of collective spin noise can be used to verify the entangling powers of quantum computer architectures based on interacting spins.Comment: 7 pages, including 3 figure

    Quantum interference of electromagnetic fields from remote quantum memories

    Get PDF
    We observe quantum, Hong-Ou-Mandel, interference of fields produced by two remote atomic memories. High-visibility interference is obtained by utilizing the finite atomic memory time in four-photon delayed coincidence measurements. Interference of fields from remote atomic memories is a crucial element in protocols for scalable generation of multi-node remote qubit entanglement.Comment: 4 pages, 3 figure

    Diffraction effects on light-atomic ensemble quantum interface

    Full text link
    We present a simple method to include the effects of diffraction into the description of a light-atomic ensemble quantum interface in the context of collective variables. Carrying out a scattering calculation we single out the purely geometrical effect. We apply our method to the experimentally relevant case of Gaussian shaped atomic samples stored in single beam optical dipole traps and probed by a Gaussian beam. We derive analytical scaling relations for the effect of the interaction geometry and compare our findings to results from 1-dimensional models of light propagation.Comment: 13 pages, 7 figures, comments welcom

    Measurement schemes for the spin quadratures on an ensemble of atoms

    Full text link
    We consider how to measure collective spin states of an atomic ensemble based on the recent multi-pass approaches for quantum interface between light and atoms. We find that a scheme with two passages of a light pulse through the atomic ensemble is efficient to implement the homodyne tomography of the spin state. Thereby, we propose to utilize optical pulses as a phase-shifter that rotates the quadrature of the spins. This method substantially simplifies the geometry of experimental schemes.Comment: 4pages 2 figure

    Universal observable detecting all two-qubit entanglement and determinant based separability tests

    Full text link
    We construct a single observable measurement of which mean value on four copies of an {\it unknown} two-qubit state is sufficient for unambiguous decision whether the state is separable or entangled. In other words, there exists a universal collective entanglement witness detecting all two-qubit entanglement. The test is directly linked to a function which characterizes to some extent the entanglement quantitatively. This function is an entanglement monotone under so--called local pure operations and classical communication (pLOCC) which preserve local dimensions. Moreover it provides tight upper and lower bounds for negativity and concurrence. Elementary quantum computing device estimating unknown two-qubit entanglement is designed.Comment: 5 pages, RevTeX, one figure replaced by another, tight bounds on negativity and concurrence added, function proved to be a monotone under the pure LOCC, list of authors put in alphabetical orde

    Photothermal analysis of heterogeneous semiconductor structures under a pulse laser irradiation

    No full text
    The analysis of photothermal conversion in materials with modified properties of surface layer was made in this work. Influence of both physical and geometrical nonlinearities on the process of heat distribution was estimated
    corecore