551 research outputs found

    Spin-Isospin Excitations and Muon Capture by Nuclei

    Full text link
    By analyzing the energy-weighted moments of the strength function calculated in RPA and beyond it is shown that the explanation of the effect of missing strength of Gamow-Teller transitions requires that residual interaction produce high-excited 1+1^{+} particle-hole collective states. The example of this interaction is presented. The manifestations of spin-isospin nuclear response in nuclear muon capture are discussed.Comment: 16 pages, 5 figures, 2 tables. The talk at the XVI International School on Nuclear Physics, Neutron Physics and Nuclear Energy, September 19-26, Varna, Bulgari

    Theoretical investigation of TbNi_{5-x}Cu_x optical properties

    Full text link
    In this paper we present theoretical investigation of optical conductivity for intermetallic TbNi_{5-x}Cu_x series. In the frame of LSDA+U calculations electronic structure for x=0,1,2 and on top of that optical conductivities were calculated. Disorder effects of Ni for Cu substitution on a level of LSDA+U densities of states (DOS) were taken into account via averaging over all possible Cu ion positions for given doping level x. Gradual suppression and loosing of structure of optical conductivity at 2 eV together with simultaneous intensity growth at 4 eV correspond to increase of Cu and decrease of Ni content. As reported before [Knyazev et al., Optics and Spectroscopy 104, 360 (2008)] plasma frequency has non monotonic doping behaviour with maximum at x=1. This behaviour is explained as competition between lowering of total density of states on the Fermi level N(E_F) and growing of number of carriers. Our theoretical results agree well with variety of recent experiments.Comment: 4 pages, 3 figure

    Optical spectroscopy and electronic structure of compounds HoNi 5-x Alx (x = 0, 1, 2)

    Full text link
    The optical properties of the compounds HoNi5 - x Al x (x = 0, 1, 2) have been investigated using the ellipsometric method in the wavelength range from 0.22 to 16 μm. The electronic structure of these intermetallic compounds has been calculated in the local electron-spin density approximation with the correction for strong electronic interactions in the 4f shell of the holmium ions. The experimental dispersion dependences of optical conductivity in the region of interband light absorption have been interpreted based on the results of the calculation of the electron density of states. The plasma and relaxation frequencies of electrons have been determined. © 2013 Pleiades Publishing, Ltd

    Microscopic Calculation of Total Ordinary Muon Capture Rates for Medium - Weight and Heavy Nuclei

    Full text link
    Total Ordinary Muon Capture (OMC) rates are calculated on the basis of the Quasiparticle Random Phase Approximation for several spherical nuclei from 90^Zr to 208^Pb. It is shown that total OMC rates calculated with the free value of the axial-vector coupling constant g_A agree well with the experimental data for medium-size nuclei and exceed considerably the experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates to the nuclear residual interactions is discussed.Comment: 27 pages and 3 figure

    Influence of aluminum impurity on the electronic structure and optical properties of the TbNi5 intermetallic compound

    Full text link
    The electronic structure of the TbNi5 - xAlx intermetallic compounds (x = 0, 1, 2) is calculated in the local electron density approximation with the correction to strong electron correlations in 4f shell of terbium ions. Spectral properties of these compounds are measured by ellipsometry in a wavelength range of 0. 22-16 μm. Frequency dependences of optical conductivity in the region of interband optical absorption are interpreted based on the results of calculations of electron densities of states. The relaxation and plasma frequencies of conduction electrons are determined. © 2013 Pleiades Publishing, Ltd

    Specific features of the electronic structure and spectral properties of NdNi5 - xCux compounds

    Full text link
    The spectral properties of the intermetallic compounds NdNi5 - xCux (x = 0, 1, 2) have been studied using optical ellipsometry in the wavelength range 0.22-16 μm. It has been established that substitution of copper atoms for nickel leads to noticeable changes in the optical absorption spectra, plasma frequencies, and relaxation frequencies of conduction electrons. Spin-polarized calculations of the electronic structure of these compounds have been performed in the local spin density approximation allowing for strong electron correlations (LSDA + U method) in the 4f shell of the rare-earth ion. The calculated electron densities of states have been used to interpret the experimental dispersion curves of optical conductivity in the interband light absorption region. © 2013 Pleiades Publishing, Ltd

    Optical spectroscopy and electronic structure of the GdCux compounds (x = 1, 2, 5)

    Full text link
    Optical properties of the GdCu, GdCu2, and GdCu5 compounds with various crystal lattices have been investigated using ellipsometry in a spectral range of 0. 22-16 μm. Theoretical calculations of the electronic structure of these intermetallic compounds have been performed in the approximation of local electron density with the correction for strong electron correlations in a 4f shell of gadolinium ions. Based on the results of calculations, the interpretation of experimental spectra of interband optical conductivity has been proposed. The plasma and relaxation frequencies of conduction electrons have been determined. © 2013 Pleiades Publishing, Ltd

    Theory of magnetic domains in uniaxial thin films

    Full text link
    For uniaxial easy axis films, properties of magnetic domains are usually described within the Kittel model, which assumes that domain walls are much thinner than the domains. In this work we present a simple model that includes a proper description of the magnetostatic energy of domains and domain walls and also takes into account the interaction between both surfaces of the film. Our model describes the behavior of domain and wall widths as a function of film thickness, and is especially well suited for the strong stripe phase. We prove the existence of a critical value of magneto-crystalline anisotropy above which stripe domains exist for any film thickness and justify our model by comparison with exact results. The model is in good agreement with experimental data for hcp cobalt.Comment: 15 pages, 7 figure

    Shell-Model Effective Operators for Muon Capture in ^{20}Ne

    Get PDF
    It has been proposed that the discrepancy between the partially-conserved axial-current prediction and the nuclear shell-model calculations of the ratio CP/CAC_P/C_A in the muon-capture reactions can be solved in the case of ^{28}Si by introducing effective transition operators. Recently there has been experimental interest in measuring the needed angular correlations also in ^{20}Ne. Inspired by this, we have performed a shell-model analysis employing effective transition operators in the shell-model formalism for the transition 20Ne(0g.s.+)+μ20F(1+;1.057MeV)+νμ^{20}Ne(0^+_{g.s.})+\mu^- \to ^{20}F(1^+; 1.057 MeV) + \nu_\mu. Comparison of the calculated capture rates with existing data supports the use of effective transition operators. Based on our calculations, as soon as the experimental anisotropy data becomes available, the limits for the ratio CP/CAC_P/ C_A can be extracted.Comment: 9 pages, 3 figures include

    Experimental and theoretical investigations on magnetic and related properties of ErRuSi

    Get PDF
    We report experimental and theoretical studies of magnetic and related properties of ErRuSi compound. Various experimental techniques such as neutron diffraction, magnetization, magneto-thermal, magneto-transport, optical have been used to study the compound. Neutron diffraction shows ferromagnetic ordering at low temperatures with moments aligned in ab plane. Neutron diffraction and magnetization data show reduction in magnetic moment, which may be due to crystalline electric field effects at low temperatures. The compound shows good magnetocaloric properties with a low field adiabatic temperature change of 4.7 K, which is larger than that of many proposed materials for magnetic refrigeration at low temperatures. Magnetoresistance shows large negative value at 8 K, which changes its sign and increases in magnitude, with decrease in temperature and/or increase in field. The positive MR at low temperatures attributed to the Lorentz force effect. The electronic structure calculations accounting for electronic correlations of the 4f electrons of Er reproduces the ferromagnetic ordering and effective magnetic moment. Interband transitions between the Ru and Er d states and Er f states in one spin projection are found to form the main features of the measured optical conductivity in this compound.Comment: 14 pages, 10 figure
    corecore