696 research outputs found
Endotoxin and cytokines in patients with gastrointestinal tract perforation
Plasma levels of endotoxin and various cytokines were assessed in 70 patients with gastrointestinal tract perforation. Sepsis developed in 29 of them, and eight of these (27.6%) had on admission endotoxin levels higher than 9.8 pg ml-1. The clinical outcome correlated with the level of tumour necrosis factor α (TNFα), rather than with the endotoxin level. The high interleukin 6 (IL-6) level was shown in septic patients and no correlation was observed between the IL-6 level and the clinical outcome. Plasma TNFα levels tended to change independently from endotoxin levels, suggesting that TNFα may have been locally produced in inflammatory lesions
Diffuse Neutron Scattering Study of a Disordered Complex Perovskite Pb(Zn1/3Nb2/3)O3 Crystal
Diffuse scattering around the (110) reciprocal lattice point has been
investigated by elastic neutron scattering in the paraelectric and the relaxor
phases of the disordered complex perovskite crystal-Pb(Zn1/3Nb2/3)O3(PZN). The
appearance of a diffuse intensity peak indicates the formation of polar
nanoregions at temperature T*, approximately 40K above Tc=413K. The analysis of
this diffuse scattering indicates that these regions are in the shape of
ellipsoids, more extended in the direction than in the direction.
The quantitative analysis provides an estimate of the correlation length, \xi,
or size of the regions and shows that \xi ~1.2\xi , consistent with
the primary or dominant displacement of Pb leading to the low temperature
rhombohedral phase. Both the appearance of the polar regions at T*and the
structural transition at Tc are marked by kinks in the \xi curve but not
in the \xi one, also indicating that the primary changes take place in a
direction at both temperatures.Comment: REVTeX file. 4 pages, 3 figures embedded, New version after referee
cond-mat/010605
Detection and correction of the misplacement error in THz Spectroscopy by application of singly subtractive Kramers-Kronig relations
In THz reflection spectroscopy the complex permittivity of an opaque medium
is determined on the basis of the amplitude and of the phase of the reflected
wave. There is usually a problem of phase error due to misplacement of the
reference sample. Such experimental error brings inconsistency between phase
and amplitude invoked by the causality principle. We propose a rigorous method
to solve this relevant experimental problem by using an optimization method
based upon singly subtractive Kramers-Kronig relations. The applicability of
the method is demonstrated for measured data on an n-type undoped (100) InAs
wafer in the spectral range from 0.5 up to 2.5 THz.Comment: 16 pages, 5 figure
Scalar field dynamics in warped AdS_3 black hole background
We study the normal modes of a scalar field in the background of a warped
AdS_3 black hole which arises in topologically massive gravity. We discuss the
normal mode spectrum using the brick wall boundary condition. In addition, we
investigate the possibility of a more general boundary condition for the scalar
field.Comment: 7 pages, one figure, revtex4, refs. added and minor modifications in
tex
Effective Hamiltonian for Excitons with Spin Degrees of Freedom
Starting from the conventional electron-hole Hamiltonian , we
derive an effective Hamiltonian for excitons with
spin degrees of freedom. The Hamiltonian describes optical processes close to
the exciton resonance for the case of weak excitation. We show that
straightforward bosonization of does not give the correct form
of , which we obtain by a projection onto the subspace
spanned by the excitons. The resulting relaxation and renormalization
terms generate an interaction between excitons with opposite spin. Moreover,
exciton-exciton repulsive interaction is greatly reduced by the
renormalization. The agreement of the present theory with the experiment
supports the validity of the description of a fermionic system by bosonic
fields in two dimensions.Comment: 12 pages, no figures, RevTe
Ultrafast optical nonlinearity in quasi-one-dimensional Mott-insulator
We report strong instantaneous photoinduced absorption (PA) in the
quasi-one-dimensional Mott insulator in the IR spectral
region. The observed PA is to an even-parity two-photon state that occurs
immediately above the absorption edge. Theoretical calculations based on a
two-band extended Hubbard model explains the experimental features and
indicates that the strong two-photon absorption is due to a very large
dipole-coupling between nearly degenerate one- and two-photon states. Room
temperature picosecond recovery of the optical transparency suggests the strong
potential of for all-optical switching.Comment: 10 pages, 4 figure
- …