981 research outputs found

    Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury

    Get PDF
    The Notch signaling pathway consists of several receptors and their ligands Delta and Jagged and is important for embryogenesis, cellular differentiation and proliferation. Activation of Notch receptors causes their cleavage yielding cytoplastic domains that translocate into the nucleus to induce target proteins such as the basic-loop-helix proteins Hes and Hey. Here we sought to clarify the significance of the Notch signaling pathway in acute kidney injury using a rat ischemia-reperfusion injury model and cultured NRK-52E cells. Analysis of the whole kidney after injury showed increased expression of Delta-1 and Hes-1 mRNA and protein along with processed Notch-2. Confocal microscopy, using specific antibodies, showed that Delta-1, cleaved Notch-2 and Hes-1 colocalized in the same segments of the injured renal proximal tubules. Recombinant Delta-1 significantly stimulated NRK-52E cell proliferation. Our study suggests that the Delta-1/Notch-2/Hes-1 signaling pathway may regulate the regeneration and proliferation of renal tubules during acute kidney injury

    Effect of splenectomy on type-1/type-2 cytokine gene expression in a patient with adult idiopathic thrombocytopenic purpura (ITP)

    Get PDF
    BACKGROUND: In view of clinical observations and laboratory results that support a central role of the spleen in idiopathic thrombocytopenic purpura (ITP) pathophysiology, we studied the effect of splenectomy on type-1 and type-2 cytokine gene expression in an adult ITP case, refractory to conservative treatment. CASE PRESENTATION: The patient was subjected to splenectomy 9 months after the diagnosis with complete response, attaining platelet counts over 150 × 10(6)/L within 10 days after the operation. Two consecutive blood samples were obtained from the patient, 3 and 7 months after the splenectomy for the purposes of this study. A control group consisted of 11 healthy adults. Peripheral blood mononuclear cells were prepared from each blood sample and cultured in vitro for 8 h with the addition of the mitogens phorbol myristate acetate and ionomycin. Total cellular RNA extracted from 10(6 )cells was submitted to semiquantitave reverse transcriptase-polymerase chain reaction (RT-PCR) for the amplification of IL-2, IFN-γ, IL-4, IL-5, and IL-10 metagraphs. The PCR products were run on ethidium-stained agarose gels, photographed and quantified by densitometry. A steep decrease of type-1 cytokine expression (IL-2, IFN-γ) and their calculated sum expressing Th1 activity was observed at 7 months post-splenectomy compared to 3 months post-splenectomy, in parallel with a rise of platelet count from 190 × 10(6)/L to 265 × 10(6)/L. The change of type-2 cytokine expression (IL-4, IL-5, IL-10) was slight and the Th2 activity (IL-4+IL-5) remained largely unchanged. The Th1/Th2 ratio, that reflects the pathogenic disease-specific T-cell immune deviation, was accordingly reduced 7 months post-splenectomy (Th1/Th2 = 1.3) compared to 3 months (Th1/Th2 = 3.5). CONCLUSIONS: The reduction of the Th1/Th2 cytokine ratio that was observed over time after splenectomy was accompanied by full clinical remission. Nevertheless, the persistence of a type-1 polarization, even after several months following spleen removal, is suggestive of a more basic abnormality of the immune function in these patients

    Complications of Evans' syndrome in an infant with hereditary spherocytosis: a case report

    Get PDF
    Hereditary spherocytosis (HS) is a genetic disorder of the red blood cell membrane clinically characterized by anemia, jaundice and splenomegaly. Evans' syndrome is a clinical syndrome characterized by autoimmune hemolytic anemia (AIHA) accompanied by immune thrombocytopenic purpura (ITP). It results from a malfunction of the immune system that produces multiple autoantibodies targeting at least red blood cells and platelets. HS and Evans' syndrome have different mechanisms of pathophysiology one another. We reported the quite rare case of an infant who had these diseases concurrently. Possible explanations of the unexpected complication are discussed

    Conformational changes and protein stability of the pro-apoptotic protein Bax

    Get PDF
    Pro-apoptotic Bax is a soluble and monomeric protein under normal physiological conditions. Upon its activation substantial structural rearrangements occur: The protein inserts into the mitochondrial outer membrane and forms higher molecular weight oligomers. Subsequently, the cells can undergo apoptosis. In our studies, we focused on the structural rearrangements of Bax during oligomerization and on the protein stability. Both protein conformations exhibit high stability against thermal denaturation, chemically induced unfolding and proteolytic processing. The oligomeric protein is stable up to 90 °C as well as in solutions of 8 M urea or 6 M guanidinium hydrochloride. Helix 9 appears accessible in the monomer but hidden in the oligomer assessed by proteolysis. Tryptophan fluorescence indicates that the environment of the C-terminal protein half becomes more apolar upon oligomerization, whereas the loop region between helices 1 and 2 gets solvent exposed

    Broadband Coupling into a Single-Mode, Electroactive Integrated Optical Waveguide for Spectroelectrochemical Analysis of Surface-Confined Redox Couples

    Get PDF
    Pushing the sensitivity of spectroelectrochemical techniques to routinely monitor changes in spectral properties of thin molecular films (i.e., monolayer or submonolayer) adsorbed on an electrode surface has been a goal of many investigators since the earliest developments in this field. 1 It was initially recognized that exploiting the evanescent field generated by total internal reflection at the interface of an optically transparent electrode (such as a thin film of tin oxide or indium tin oxide (ITO) on glass or quartz) has the inherent advantage of selectively probing only the near-surface region, as opposed to bulk sampling with transmission based techniques. Furthermore, by utilizing the multiple reflections in an attenuated total reflectance (ATR) geometry, an enhancement in sensitivity can be realized, and as the thickness of the ATR element is decreased, the number of reflections increases, yielding a substantial sensitivity enhancement. [2][3][4][5][6] Itoh and Fujishima were the first to show the advantages of reducing the thickness of an ATR element overcoated with a transparent conductive oxide to the integrated optical waveguide (IOW) regime. Using a four-mode, gradient index waveguide coated with a transparent, conductive tin oxide layer, they demonstrated large sensitivity enhancements, relative to a single pass transmission experiment, for spectroelectrochemical measurements of methylene blue. 7,8 Other research groups subsequently described similar gradient index, multilayer, electroactive waveguide structures, but they did not make use of the technology to explore the spectroelectrochemistry of (sub)monolayer coverage films. [9][10][11][12][13] We recently described a single-mode, electroactive planar IOW (the EA-IOW) having a step refractive index profile. It was fabricated by sputtering a Corning 7059 glass layer (400 nm) over soda lime glass or quartz, followed by a 200-nm layer of SiO 2

    Chemical Inhibition of the Mitochondrial Division Dynamin Reveals Its Role in Bax/Bak-Dependent Mitochondrial Outer Membrane Permeabilization

    Get PDF
    SummaryMitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death

    Fos-related antigen-1 transgenic mouse as a model for systemic sclerosis: A potential role of M2 polarization

    Get PDF
    Objectives:To investigate the systemic sclerosis–related phenotype in fos-related antigen-1 transgenic mice and its underlying mechanisms.Methods:Lung and skin sections of constitutive fos-related antigen-1 transgenic mice and wild-type mice were examined by tissue staining and immunohistochemistry. The tricuspid regurgitation pressure gradient was measured by transthoracic echocardiography with a Doppler technique. To assess the impact of fos-related antigen-1 expression on macrophage function, bone marrow–derived mononuclear cells were derived from mice that expressed fos-related antigen-1 under the control of doxycycline and wild-type littermates. These bone marrow–derived mononuclear cells were induced to differentiate into macrophages with or without doxycycline, and analyzed for gene and protein expression. Finally, lung explants obtained from systemic sclerosis patients and control donors were subjected to immunohistochemistry.Results:The lungs of fos-related antigen-1 transgenic mice showed excessive fibrosis of the interstitium and thickening of vessel walls, with narrowing lumen, in an age-dependent manner. The tricuspid regurgitation pressure gradient was significantly elevated in fos-related antigen-1 transgenic versus control mice. Increased dermal thickness and the loss of subdermal adipose tissue were also observed in the fos-related antigen-1 transgenic mice. These changes were preceded by a perivascular infiltration of mononuclear cells, predominantly consisting of alternatively activated or M2 macrophages. Overexpressing fos-related antigen-1 in bone marrow–derived mononuclear cell cultures increased the expression of M2-related genes, such as Il10, Alox15, and Arg1. Finally, fos-related antigen-1-expressing M2 macrophages were increased in the lung tissues of systemic sclerosis patients.Conclusions:The fos-related antigen-1 transgenic mouse serves as a genetic model of systemic sclerosis that recapitulates the major vascular and fibrotic manifestations of the lungs and skin in systemic sclerosis patients. M2 polarization mediated by the up-regulation of fos-related antigen-1 may play a critical role in the development of systemic sclerosis
    • …
    corecore