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SUMMARY

Mitochondrial fusion and division play important
roles in the regulation of apoptosis. Mitochondrial fu-
sion proteins attenuate apoptosis by inhibiting re-
lease of cytochrome c from mitochondria, in part by
controlling cristae structures. Mitochondrial division
promotes apoptosis by an unknown mechanism.
We addressed how division proteins regulate apo-
ptosis using inhibitors of mitochondrial division iden-
tified in a chemical screen. The most efficacious in-
hibitor, mdivi-1 (for mitochondrial division inhibitor)
attenuates mitochondrial division in yeast and mam-
malian cells by selectively inhibiting the mitochon-
drial division dynamin. In cells, mdivi-1 retards apo-
ptosis by inhibiting mitochondrial outer membrane
permeabilization. In vitro, mdivi-1 potently blocks
Bid-activated Bax/Bak-dependent cytochrome c re-
lease from mitochondria. These data indicate the
mitochondrial division dynamin directly regulates
mitochondrial outer membrane permeabilization in-
dependent of Drp1-mediated division. Our findings
raise the interesting possibility that mdivi-1 repre-
sents a class of therapeutics for stroke, myocardial
infarction, and neurodegenerative diseases.

INTRODUCTION

Mitochondrial fusion and division proteins have been identified in

model systems such as flies and yeast (Hoppins et al., 2007).

Among these proteins are three highly conserved dynamin-re-

lated GTPases (DRPs), which function via self-assembly to reg-

ulate membrane dynamics in a variety of cellular events. DRPs

are relatively large proteins that contain, in addition to a canonical

GTPase domain, several regions that facilitate self-assembly via

both intra- and intermolecular interactions (Danino and Hinshaw,

2001). Self-assembly of dynamin-1, which functions in endocy-
Deve
tosis and Dnm1, which functions in mitochondrial division,

greatly stimulates the hydrolysis of GTP (Ingerman et al., 2005;

Warnock et al., 1996). Both of these DRP activities, self-assem-

bly and self-assembly stimulated GTP hydrolysis, are critical for

the cellular functions of these proteins.

Two distinct DRPs are required for mitochondrial fusion, the

transmembrane proteins Fzo1 (yeast)/Mfn1/2 (mammals) and

Mgm1 (yeast)/Opa1 (mammals), which drive outer and inner mi-

tochondrial membrane fusion, respectively (Meeusen et al.,

2004, 2006). A single DRP, Dnm1 (yeast)/Drp1 (mammals), is re-

quired for mitochondrial division. Current models suggest that

self-assembly of mitochondrial fusion DRPs functions to tether

membranes together, at least in part, by mediating intermolecu-

lar trans interactions (Griffin and Chan, 2006; Ishihara et al.,

2004; Koshiba et al., 2004; Meeusen et al., 2004, 2006). In con-

trast, biochemical and structural analyses indicate that the self-

assembly of the mitochondrial division DRP into ring-like struc-

tures around mitochondria directly drives membrane constric-

tion and fission during division (Ingerman et al., 2005; Naylor

et al., 2006).

In addition to the role of mitochondrial dynamics in the regula-

tion of mitochondrial distribution and mitochondrial DNA mainte-

nance, detailed analysis of mitochondrial behavior during apo-

ptosis revealed that mitochondrial division and fusion regulate

mitochondrial dependent or intrinsic apoptosis (Youle, 2005). In-

trinsic apoptosis is critically dependent on mitochondrial outer

membrane permeabilization (MOMP), which results in the re-

lease of mitochondrial intermembrane space proteins, such as

cytochrome c, that are mediators of cell death (Antignani and

Youle, 2006; Chipuk et al., 2006; Newmeyer and Ferguson-

Miller, 2003). Although the exact mechanism for MOMP is un-

known, it is regulated by interactions among the pro- and antia-

poptotic Bcl-2 proteins, a protein family defined by the presence

of up to four BH domains (Adams and Cory, 1998). Current

models suggest that BH3-dependent activation of the proapop-

totic Bcl-2 members, such as the multidomain proteins Bax and

Bak, causes them to oligomerize and insert into the outer mito-

chondrial membrane, where they promote the release of inter-

membrane space proteins.
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Recent data indicate that mitochondrial fusion protects cells

from apoptosis (Neuspiel et al., 2005; Olichon et al., 2003; Su-

gioka et al., 2004). While the exact molecular mechanism is not

completely understood, the mitochondrial inner membrane fu-

sion protein, Opa1, may, through its role in cristae maintenance,

exert an antiapoptotic effect by attenuating the MOMP-induced

release of cytochrome c (Frezza et al., 2006; Scorrano et al.,

2002). This model has been recently substantiated by work show-

ing that Mgm1, the yeast ortholog, also plays a role in cristae

maintenance (Meeusen et al., 2006). Recent studies have also

shown that the proapoptotic Bcl-2 family members, Bax and

Bak, play a reciprocal housekeeping role in mitochondrial fusion

in nonapoptotic cells. Overexpression of the C. elegans Bcl-2

protein, Ced-9, induces mitochondrial fusion in mammalian cells

and interacts with the outer membrane fusion protein, Mfn2 (De-

livani et al., 2006). In addition, in apoptotic cells, Mfn2 colocalizes

with mitochondrial Bax and Bak containing clusters (Karbowski

and Youle, 2003). In nonapoptotic cells, Bax and Bak influence

the mitochondrial distribution and motility of Mfn2, suggesting

that these proteins regulate Mfn2 activity (Karbowski et al.,

2006). These data imply that interactions among Bcl-2 proteins

and Mfn2 reciprocally regulate and integrate mitochondrial fusion

and the apoptotic activity of Bcl-2 family members.

In contrast to fusion, inhibition of Drp1-dependent mitochon-

drial division delays and partially inhibits intrinsic apoptosis

(Frank et al., 2001; Jagasia et al., 2005; Lee et al., 2004). Con-

comitant with MOMP during apoptosis, Drp1 self-assembly

and its recruitment to mitochondria are increased, resulting in

an enhanced rate of Drp1-dependent mitochondrial division

and mitochondrial fragmentation. Evidence suggests that mito-

chondrial division and fragmentation per se may not contribute

to apoptosis, raising the possibility that mitochondrial division

proteins directly regulate this event (Martinou and Youle, 2006;

Rolland and Conradt, 2006; Breckenridge et al., 2003; Frank

et al., 2001; Germain et al., 2005). Consistent with this, assem-

bled Drp1 colocalizes with activated Bax clusters on mitochon-

dria, some of which are at presumptive division sites. Here, we

used a small molecule inhibitor of the mitochondrial division dy-

namin to probe the mechanistic role that mitochondrial division

plays in apoptosis.

RESULTS

A Chemical Screen for Inhibitors
of Mitochondrial Division
The growth phenotypes of mitochondrial division- and mito-

chondrial fusion-defective mutants formed the basis of our

screen for small molecules that inhibit mitochondrial division.

Specifically, exposure of yeast cells harboring the tempera-

ture-sensitive fzo1-1 allele to the nonpermissive temperature

causes mitochondrial membranes to fragment and as a conse-

quence, cells quantitatively lose mtDNA and are unable to

grow on the nonfermentable carbon source glycerol (Figure 1A,

fzo1-1, YPEG [yeast extract, peptone, ethanol, and glycerol me-

dia], 37�C). These cells can still be propagated if grown using

a fermentable carbon source, such as glucose (Figure 1A,

fzo1-1, YPD [yeast extract, peptone, and dextrose media],

37�C). Mutations in components required for division, such

as DNM1, which encodes the mitochondrial division dynamin,
194 Developmental Cell 14, 193–204, February 2008 ª2008 Elsevier
suppress division-mediated mitochondrial fragmentation and

also mitochondrial DNA loss in fzo1-1 cells and thus also sup-

press the glycerol growth defect at the nonpermissive tempera-

ture (Figure 1A, fzo1-1 Ddnm1). In yeast, loss of mitochondrial di-

vision has virtually no associated growth phenotype under

laboratory conditions (Figure 1A, Ddnm1, YPD and YPEG).

Thus, to identify mitochondrial division inhibitors, we per-

formed a straightforward growth-based screen to identify small

molecules that suppress the glycerol growth defect of fzo1-1

cells. To enhance the steady-state intracellular concentration

of the drugs in yeast cells, null mutations in the PDR1 and

PDR3 genes, which encode transcriptional regulatory proteins

that positively control the expression of multidrug resistance

ABC transporters, were created in the strains used in the screen

and in the characterization of the small molecules (Rogers et al.,

2001). These additional mutations had no effect on mitochondrial

division and fusion in cells (not shown). Initially, small molecules

were screened at single concentrations between 10–100 mM in

primary and secondary assays due to the limited amount of the

compounds obtained. When tested alone, DMSO, the solvent

used to solubilize the small molecules, had no significant effects

in any of the assays described.

We screened approximately 23,000 compounds, representa-

tive of several commercially available libraries, using the primary

growth assay-based screen (Table 1, 1� screen). All compounds

identified were further tested in a secondary analysis for their ef-

fects on steady-state mitochondrial morphology in yeast (Table 1,

2� screen). The steady-state structure of mitochondria in yeast

and mammalian cells is an indicator of the relative rates of mito-

chondrial division and fusion in cells (Bleazard et al., 1999;

Hermann et al., 1998; Nunnari et al., 1997; Sesaki and Jensen,

1999). Specifically, the presence of fragmented mitochondrial

structures indicates that mitochondrial fusion is selectively at-

tenuated. In contrast, the presence of net-like mitochondrial

structures indicates that mitochondrial division is selectively at-

tenuated. We assayed for these morphological phenotypes us-

ing a mitochondrially targeted GFP that is efficiently localized

to both wild-type and respiratory-deficient mitochondria. In this

secondary assay, small molecules were judged to be positive if

they produced a mutant phenotype in greater than 20% of the

cell population. As summarized in Table 1, the overall frequency

of division inhibitor hits (total of 3) identified using our primary

and secondary assays was extremely low, indicating our screen-

ing strategy was selective.

Characterization of the Mitochondrial
Division Inhibitor, Mdivi-1
We identified three potential mitochondrial division inhibitors and

pursued the most efficacious, which is a derivative of quinazoli-

none, termed mdivi-1 (for mitochondrial division inhibitor,

Figure 1B). As expected, we observed that mdivi-1 suppresses

the glycerol growth defects in fzo1-1 cells (Figure 1C). Signifi-

cantly, mdivi-1 also suppressed the glycerol growth defects ob-

served in other mutants defective in the mitochondrial fusion

pathway, such as mgm1-5 cells, which contain a mutated

copy of the gene encoding the mitochondrial inner membrane

fusion dynamin, Mgm1 (mgm1-5, Figure 1C). In addition, we

observed that mdivi-1 causes the rapid (%5 min), reversible

and dose-dependent formation of net-like mitochondria in
Inc.
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Figure 1. Chemical Screen for Mitochon-

drial Division Inhibitors

(A) Growth phenotypes of mitochondrial fusion

(fzo1-1) and division (Ddnm1) mutants.

(B)Chemical structureof thequinazolinone mdivi-1.

Important structural features are highlighted in red

and were determined by comparing the efficacies

of mdivi-1-like compounds shown in Figure 2.

(C) mdivi-1 suppresses the growth defect of mito-

chondrial fusion mutants fzo1-1 and mgm1-5 at

the restrictive temperature.

(D and E) mdivi-1 causes the formation of mito-

chondrial net-like structures ([E], right panel,

mdivi-1; left panel, DMSO [control]) in Dprd1Dprd3

yeast cells in a dose-dependent manner ([D], repre-

sentative experiment shown, n R 100).

(F) mdivi-1 has no effect on the F-actin cytoskele-

ton. Mitochondria are in red, and Phalloidin is in

green. Left panel: DMSO control cells. Center

panel: mdivi-1-treated cells. Right panel: Latruncu-

lin-A- and mdivi-1-treated cells. N = mitochondrial

nets. Scale bar = 2 mm.
wild-type cells, with an IC50 of approximately 10 mM (Figures 1D

and 1E). These observations indicate that mdivi-1 acts as a gen-

eral suppressor of mitochondrial fusion defects by selectively in-

hibiting mitochondrial division.

We also directly measured the rates of division and fusion

events in yeast by time-lapse fluorescence microscopy after

the addition mdivi-1. Time-lapse analysis of mitochondria in

mdivi-1 treated cells indicates that no detectable division events

occurred, but that fusion events were observed (not shown). In

addition, mdivi-1 did not change the net-like morphology of mi-

tochondria in Ddnm1 cells, further suggesting that it blocks divi-

sion by acting in the Dnm1-dependent division pathway (not

shown). Taken together, our results indicate that mdivi-1 is a se-

lective inhibitor of mitochondrial division.

To address the specificity of mdivi-1 effects on mitochondrial

division, we examined its effect on two cellular structures that,

when perturbed, can cause indirect changes in mitochondrial

morphology: the actin cytoskeleton and the peripheral ER net-

work. These structures are routinely examined in yeast mito-

chondrial morphology mutants as a test for the specificity of

the mitochondrial phenotype (McConnell et al., 1990). Treatment

of cells with 100 mM mdivi-1 caused the formation of mitochon-

drial net-like structures, but did not result in significant changes

in either the actin cytoskeleton (Figure 1F, 100%, n = 100, left

panel) or the peripheral ER network (not shown, 100%, n = 50),

as compared to control DMSO-treated cells. In contrast, addi-

tion of the F-actin depolymerizing compound Latrunculin-A after

mdivi-1 treatment caused disassembly of actin cables and

patches and caused mitochondrial nets to collapse and aggre-

gate, consistent with published observations (Bleazard et al.,

1999; Figure 1F, right panel). These observations indicate that

the effect of mdivi-1 on mitochondrial morphology is not the re-

sult of secondary changes in either the actin cytoskeleton or ER

network and are consistent with our data indicating that mdivi-1

produces net-like structures by directly attenuating mitochon-

drial division.
Deve
Structure-Activity Analysis of Mdivi-1
To determine which structural features are important for the

effects of mdivi-1 on mitochondrial division, we used ChemNavi-

gator to search available compound databases for small mole-

cules that uniquely represented key structural features of

mdivi-1. We tested a total of over 30 mdivi-1-like molecules for

their effects on mitochondrial morphology in yeast. A summary

of representative compounds, termed A–I, and their efficacy is

shown in Figure 2 and Table 2. In no case did we identify a com-

pound that was more efficacious than mdivi-1 (compound A);

rather most compounds had the same (Figure 2, compound B),

moderate (Figure 2, compounds C–E), or poor/no efficacy (Fig-

ure 2, compounds F–I) when examined in our assay for mito-

chondrial morphology (Table 2). We utilized these derivatives

as tools to help determine the target and the specificity of

mdivi-1.

Analysis of our structure-function results indicates that at least

two structural features are important for the efficacy of mdivi-1

(Figure 1B, shown in red): an unblocked sulfhydryl moiety on

the 2-position of the quinazolinone and limited rotation about

the 3-position nitrogen-phenyl bond. Indeed, the bulky ortho

chloro substituent of the phenyl ring attached at the N-3

of mdivi-1 predicts that mdivi-1 is a mixture of two atro-

pisomers—isomers that in this case are distinct because rotation

about the nitrogen-phenyl bond is prevented or greatly slowed

Table 1. Mitochondrial Division Inhibitor Screen

Library Library Size Hits 1� Screen Hits 2� Screen

Bionet 4,800 16 1 (mdivi-1)

Cerep 4,800 3 0

Maybridge 8,800 42 2

NCI Diversity 1,900 6 0

Peakdale 2,800 0 0

Total 23,100 67 (0.3%) 3 (0.013%)
lopmental Cell 14, 193–204, February 2008 ª2008 Elsevier Inc. 195
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Figure 2. Compounds Related to Mdivi-1 Have Different Efficacies

Compounds (A–I) are grouped by their relative efficacy to form mitochondrial net-like structures in yeast. The structural differences between each molecule and

mdivi-1 (A) are highlighted in red.
by the rotational energy barrier created by the bulky ortho chloro

substituent. Consistent with this, mdivi-1 can be resolved into

two distinct species by chiral chromatography (not shown). As-

suming that one mdivi-1 isomer is selectively active in attenuat-

ing mitochondrial division, the efficacy of mdivi-1 would be 2-fold

greater than our experimental data indicate. Taken together, our

preliminary structure-activity analysis indicates that the ability of

mdivi-1 to inhibit mitochondrial division is dependent upon strin-

gent structural requirements, consistent with it being a selective

inhibitor.

Mdivi-1 Is a Selective Inhibitor of the Mitochondrial
Division Dynamin
Using a coupled assay for GTPase activity and EM analysis, we

previously characterized the kinetic and structural properties

of recombinant Dnm1 (Ingerman et al., 2005). Our analysis
196 Developmental Cell 14, 193–204, February 2008 ª2008 Elsevier
indicates that Dnm1 self-assembly greatly stimulates GTP hy-

drolysis and in the presence of nonhydrolyzable GTP analogs,

Dnm1 forms spiral structures, whose diameters correspond to

those of mitochondrial constriction sites in vivo. These data

strongly suggest a model where the self-assembly of Dnm1

drives mitochondrial constriction during division in vivo.

To test whether mdivi-1 targets Dnm1, we tested its effects on

self-assembly stimulated Dnm1 GTPase activity. As shown in

Figure 3A, mdivi-1 inhibited Dnm1 GTPase activity in a dose-de-

pendent manner, with an estimated IC50 of 1–10 mM, which is

lower but consistent with the IC50 observed for the effects of

mdivi-1 on the formation of mitochondrial net-like structure

in vivo. These observations suggest that mdivi-1 attenuates mi-

tochondrial division in vivo by inhibiting Dnm1.

Our observations raise the question of whether mdivi-1 is sim-

ply a general inhibitor of GTPase super family members and/or
Inc.
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DRPs. Thus, we examined the effects of mdivi-1 on Dnm1 1-338,

the monomeric GTPase domain of Dnm1, which lacks other

DRP-specific regions (Ingerman et al., 2005). As shown in

Figure 3A, mdivi-1 had no effect on Dnm1 1-338 GTP hydrolysis,

indicating that it is not a general inhibitor of GTPases and sug-

gesting that mdivi-1 inhibits Dnm1 by binding to other DRP re-

gions or, more interestingly, to a region dependent on multiple

domains. We also tested whether mdivi-1 targets other DRP

family members by testing its effects on dynamin-1, which func-

tions during endocytosis in the scission of clathrin-coated pits

from the plasma membrane. Significantly, mdivi-1 had no effect

on either basal (not shown) or assembly-stimulated rates of GTP

hydrolysis for dynamin-1 (Figure 3A). Together these results sug-

gest that mdivi-1 is a selective inhibitor of the mitochondrial divi-

sion DRP.

To further test the hypothesis that mdivi-1 blocks mitochon-

drial division in vivo by inhibiting Dnm1 GTPase activity, we

tested mdivi-1-like molecules of variable efficacy for their ability

to inhibit division in vivo (Figure 2, Table 2). The results from mul-

tiple independent double-blinded experiments demonstrated

that there is a tight correlation between the efficacy of a given de-

rivative to block mitochondrial division in vivo and Dnm1 GTPase

activity in vitro (Figure 3B, Table 2). This observation further sup-

ports the conclusion that the mitochondrial division DRP, Dnm1,

is the target of mdivi-1 in vivo.

To gain insight into the mechanism of mdivi-1 inhibition of

Dnm1, we performed a detailed kinetic analysis of the effects

of mdivi-1 on Dnm1 GTPase activity (Figures 3C and 3D).

From our analysis, we estimate that the Ki of mdivi-1 for Dnm1 is

1–50 mM, which is in the range of the IC50 for mdivi-1 in vivo. Our

kinetic data fit well to the concerted transition model of Monod,

Wyman, and Changeux (Monod et al., 1965), which describes

the behavior of allosteric proteins that can form oligomers of

identical subunits (Figure S1, see the Supplemental Data avail-

able with this article online). Thus, based on this model, the

Dnm1 dimer, which we have previously shown to be the building

block for assembled Dnm1, is predicted to exist in either one of

two states—R (relaxed and assembled) or T (taut and unassem-

bled)—that are in equilibrium with one another, where the R

state has a relatively high affinity for GTP and T has a relatively

low affinity for GTP. This model predicts that mdivi-1 is an allo-

steric inhibitor with relatively high affinity for the T (unassembled)

Table 2. Mdivi-1 Structure-Activity Analysis

Compounda % Net-Like Mitochondrial Morphologyb

A 90

B 90

C 80

D 80

E 50

F 6

G 9

H 4

I 2

DMSO 4
a As indicated in Figure 2. All compounds at 50 mM.
b Represents n R 100 cells.
Deve
state and relatively low affinity for the R (assembled) state of

Dnm1 and thus implies that mdivi-1 inhibits GTP hydrolysis by

blocking the self-assembly of Dnm1. Indeed, the kinetic effects

that mdivi-1 has on Dnm1 mimic those observed under high

ionic conditions, which antagonize assembly (Ingerman et al.,

2005). Specifically, we observed that mdivi-1 increases the

apparent K0.5 for GTP, lowers the apparent Vmax for GTP hydro-

lysis, and causes an increase in the Hill coefficient observed

for GTP in the Dnm1 GTP hydrolysis reaction (Figures 3C

and 3D).

We directly tested the hypothesis that mdivi-1 inhibits Dnm1

self-assembly by examining its effects by EM on Dnm1 spirals

formed in the presence of the nonhydrolyzable GTP analog

GMPPCP. As shown in Figure 3E, when present at the start of

the self-assembly reaction, mdivi-1 quantitatively blocked

GMPPCP- dependent Dnm1 self-assembly in a concentration

range similar to its effects on both Dnm1 GTPase activity in vitro

and mitochondrial division in vivo. Interestingly, when mdivi-1

was added after the formation of GMPPCP-Dnm1 spirals, the

compound had no discernable effect, i.e., failed to promote their

disassembly (data not shown). Given that Dnm1 spirals formed in

the presence of nonhydrolyzable GMPPCP are likely stable, not

dynamic structures, our observations suggest that mdivi-1

blocks self-assembly by inhibiting Dnm1 polymerization and

not by promoting disassembly.

Consistent with this, we observed that mdivi-1 inhibits GTP hy-

drolysis of the dimeric middle domain mutant, Dnm1G385D,

which is defective for self-assembly (Ingerman et al., 2005; Fig-

ures S2A and S2B). Analysis of the kinetic data for Dnm1G385D

indicated that, in contrast to the concerted transition mechanism

for Dnm1, mdivi-1 likely functions as a mixed-type inhibitor of

Dnm1G385D with a Ki of 1–4 mM, which significantly lowers the

affinity of Dnm1 for GTP. These observations indicate that

mdivi-1 targets the fundamental building block of the Dnm1 spi-

ral structure to block polymerization. This mechanism is similar

to the action of latrunculin A, which alters the actin monomer

subunit interface, alters nucleotide binding, and prevents poly-

merization of F-actin filaments (Morton et al., 2000). Taken to-

gether, our analysis of the mechanism of mdivi-1 effects on

Dnm1 activity suggests that it inhibits division by binding to an

allosteric site that blocks or retards a conformational change

required for Dnm1 self-assembly and GTP hydrolysis.

Mdivi-1 Attenuates Mammalian Mitochondrial Division
Drp1, the mammalian mitochondrial division DRP, has a high

degree of identity to its yeast ortholog Dnm1 (Labrousse et al.,

1999). This encouraged us to exploit the chemical approach

and examine the effects of mdivi-1 on mitochondrial morphology

in mammalian cells. In mammalian cells, when mitochondrial

division is retarded by expression of dominant-negative Drp1

or by RNAi of mitochondrial division proteins, tubular mitochon-

dria become progressively more interconnected to form net-like

structures, and also collapse into degenerate perinuclear struc-

tures (Smirnova et al., 1998, 2001).

The addition of mdivi-1 to mammalian cells (COS) in culture

caused a rapid and reversible formation of mitochondrial net-

like and degenerate perinuclear structures, consistent with an at-

tenuation in mitochondrial division (Figure 4A; Table S1). The IC50

of mdivi-1 for its effects on mitochondrial morphology in
lopmental Cell 14, 193–204, February 2008 ª2008 Elsevier Inc. 197
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Figure 3. The Target of Mdivi-1 Is the Mitochondrial Division Dynamin Dnm1

(A) Dose-dependent effect of mdivi-1 on the GTPase activity of Dnm1, Dnm1 1-388 (Dnm1 GTPase domain), and dynamin-1. 100% activity: Dnm1, 50 min�1;

Dnm1 1-388 0.9 min�1; dynamin-1 3.3 min�1.

(B) Effects of mdivi-1 analogs (see Figure 2) on Dnm1 GTPase activity.

(C and D) Kinetic analysis of the effects of mdivi-1 on Dnm1 GTPase activity. Representative experiments shown in (A–C).

(E) Analysis of Dnm1 self-assembly by negative stain electron microscopy. Representative images of Dnm1 incubated in the presence of GMPPCP (left panel) and

Dnm1 preincubated with mdivi-1 prior to the addition of GMPPCP (right panel). Scale bar = 100 nm.
mammalian cells (IC50 z 50 mM) is comparable to that observed

for the effect of mdivi-1 on mitochondrial morphology in yeast

(IC50 z 10 mM). In addition, we observed that the mdivi-1 struc-

tural derivatives that do not affect mitochondrial morphology in

yeast and do not inhibit Dnm1 GTPase activity also do not affect

mitochondrial morphology in COS cells (Table S1). Thus, the

characteristics of mdivi-1’s effect on mitochondria in mammalian

cells are similar to those observed in yeast cells and, by exten-
198 Developmental Cell 14, 193–204, February 2008 ª2008 Elsevier
sion, suggest that mdivi-1 inhibits mitochondrial division in mam-

malian cells by inhibiting Drp1 activity.

To test whether mdivi-1 targets Drp1, we examined its effects

on recombinant Drp1 GTPase activity in vitro. In contrast to its

effects on Dnm1, mdivi-1 had no effect on Drp1 GTP hydrolysis.

However, the maximal GTP hydrolysis rate of Drp1 was relatively

low (2.1 min-1) and we failed to detect the formation of GMPPCP-

dependent Drp1 spirals in vitro by EM, even under molecular
Inc.
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crowding conditions (data not shown), indicating that recombi-

nant Drp1 is not capable of self-assembly and is not fully

functional.

Thus, we asked whether overexpression of Drp1 in mamma-

lian cells could rescue the effects mdivi-1 on mitochondrial mor-

phology. As shown in Figure 4B, the concentration of mdivi-1

required to observe either net-like or collapsed/degenerate

perinuclear mitochondrial structures in cells was significantly

higher in the population of cells overexpressing Drp1 (IC50 =

75–100 mM) as compared to those transfected with a control

empty vector (IC50 = 10–50 mM). In addition, in agreement with

published work, depletion of Drp1 by RNAi also caused the

formation of net-like or collapsed perinuclear mitochondrial

Figure 4. Mdivi-1 Inhibits Mitochondrial Di-

vision in Mammalian Cells by Attenuating

Drp1 Self-Assembly

(A) Mitochondrial morphology in COS cells in the

absence (left panel, DMSO control) and presence

(right panels, 50 mM) of mdivi-1.

(B) Concentration of mdivi-1 required to produce

mitochondrial net-like and perinuclear structures

in COS cells increases in cells overexpressing

Drp1 (light gray bars) as compared to cells trans-

fected with a control empty vector (dark gray

bars).

(C) The reticular morphology of mitochondria (left

panel) in COS cells becomes fragmented upon ad-

dition of staurosporine (STS, center panel). mdivi-1

attenuates STS-induced mitochondrial fragmen-

tation (50 mM, right panel).

(D) mdivi-1 (50 mM, compound A) and the active

derivative B, but not the inactive derivatives G

and H (each at 50 mM), inhibit self-assembly of

GFP-Drp1 stimulated by STS treatment (in green)

in COS cells. The bottom panels are a representa-

tive region of each cell shown in the top panels and

are magnified 7-fold. Mitochondria are labeled

with MitoTracker Red CMXRos and shown in red.

All images were obtained using identical exposure

and gain settings.

Scale bars = 10 mm.

structures in cells and treatment of these

cells with mdivi-1 did not produce any

additional changes to mitochondrial mor-

phology (data not shown). These obser-

vations substantiate our conclusion that

the mitochondrial division dynamin is the

target of mdivi-1 in both yeast and mam-

malian cells.

Mdivi-1 Attenuates Mammalian
Mitochondrial Division and Drp1
Self-Assembly during Apoptosis
Drp1-mediated mitochondrial division in

mammalian cells is stimulated by apopto-

tic signals, such as staurosporine (STS),

which promote intrinsic apoptotic cell

death via Bcl-2 proteins (Frank et al.,

2001). We examined the effects of mdivi-1
on mitochondrial fragmentation caused by STS in mammalian

COS cells (Figure 4C, Table S2). As shown previously, STS stim-

ulation caused a significant increase in mitochondrial fragmenta-

tion in cells (Frank et al., 2001; Figure 4C, Table S2). In compar-

ison, mitochondrial fragmentation was significantly reduced in

cells treated with both STS and mdivi-1 (Figure 4C, Table S2).

As a control, we observed that expression of dominant-negative

Drp1 or RNAi mediated depletion of Drp1 also inhibited STS-

induced mitochondrial fragmentation to a similar degree as

mdivi-1, which is in agreement with published observations

(data not shown; Frank et al., 2001). These observations indicate

that mdivi-1 inhibits apoptosis-stimulated Drp1-dependent

mitochondrial division.
Developmental Cell 14, 193–204, February 2008 ª2008 Elsevier Inc. 199
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To gain insight into the mechanistic basis of mdivi-1 inhibition

of Drp1-mediated mitochondrial division, we exploited the fact

that during apoptosis Drp1 self-assembly and recruitment to mi-

tochondria are significantly increased and these events can eas-

ily be assayed by monitoring the behavior of GFP-Drp1 in cells

(Frank et al., 2001). As shown in Figure 4D, addition of the apo-

ptotic stimulant STS caused a decrease in diffusely localized

GFP-Drp1 and a concomitant increase in the number of GFP-

Drp1 clusters and GFP-Drp1 clusters associated with mitochon-

dria (compare green fluorescence in �STS/DMSO with +STS/

DMSO cells). In contrast, in cells treated with STS and mdivi-1

(compound A) or the active compound B, the majority of GFP-

Drp1 was diffusely distributed in the cytoplasm in a manner sim-

ilar to that observed for GFP-Drp1 in cells that were not treated

with STS (Figure 4D, compare �STS/DMSO and +STS/DMSO

with +STS/A and +STS/B). Consistent with our previous obser-

vation (Figure 4C) and as expected, mitochondria in cells treated

with STS and mdivi-1 (compound A) or the active compound B

were tubular as compared to fragmented mitochondria present

in cells treated with STS only (Figure 4D, red). In addition, in cells

treated with STS and either of the inactive mdivi-1 compounds

G and H, the localization pattern of GFP-Drp1 and the mitochon-

drial morphology was similar to cells that were treated only with

STS (Figure 4D, compare +STS/DMSO with +STS/G and +STS/

H). These observations indicate that mdivi-1 attenuates mito-

chondrial division during apoptosis by blocking Drp1 self-

assembly and the recruitment of Drp1 assembled structures to

mitochondria and are consistent with our biochemical data indi-

cating that mdivi-1 inhibits the yeast ortholog Dnm1 by blocking

polymerization. Together, these observations indicate that

mdivi-1 targets the mitochondrial division dynamin and acts in

a mechanistically conserved manner in yeast and mammalian

cells.

Mdivi-1 Attenuates Apoptosis by Inhibiting
Mitochondrial Outer Membrane Permeabilization
Given the inhibitory effect of mdivi-1 on STS-induced mitochon-

drial division, we tested whether mdivi-1 also retards apoptosis

in mammalian HeLa cells. We initially examined the effects of

mdivi-1 on the externalization of plasma membrane phosphati-

dylserine (PS), which is a relatively late event in apoptotic cell

death (Fadok and Henson, 2003). We quantified this event using

fluorescently labeled (FITC)-annexin V, which is a Ca2+-depen-

dent phospholipid binding protein with a high affinity for PS, in

conjunction with established fluorescent-activated cell sorter

(FACS) methodology. As shown in Figure 5A, we observed that

mdivi-1, but not the inactive mdivi-1 derivative G, significantly

inhibits STS-induced annexin V staining of nonnecrotic cells as

assessed by FACS analysis, indicating that mdivi-1 inhibits

apoptosis. Significantly, although the mdivi-1 inhibition of STS-

induced apoptosis was fractional, the extent of inhibition was

comparable to that observed when the dominant negative

Drp1K38A mutant is overexpressed in HeLa cells and is consis-

tent with mdivi-1 targeting Drp1 in vivo (Frank et al., 2001 and

STS-induced apoptotic cells in Drp1: Drp1 K38A = 0.8 by an-

nexin V analysis).

To resolve the point at which mdivi-1 inhibits apoptosis, we

examined its effect on the early MOMP event, measured by cy-

tochrome c release. To directly stimulate MOMP and cyto-
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chrome c release, HeLa cells were microinjected with cas-

pase-8 cleaved recombinant Bid (C8-Bid). C8-Bid directly

(Kuwana et al., 2002; Walensky et al., 2006) or indirectly (Willis

et al., 2007) activates Bax/Bak, causing MOMP and cytochrome

c release. As expected, cytochrome c release, as monitored by

a cytochrome c-GFP fusion, was not stimulated in control cells

injected with the marker Texas Red with or without the active

mdivi-1 derivative B (Figure 5B, Table S3). In contrast, but also

as expected, cytochrome c-GFP release was greatly stimulated

in cells injected with C8-Bid, (Figure 5B, DMSO, cells stained

with Texas red, and Table S3). Significantly, the active mdivi-1

derivative B dramatically inhibited C8-Bid stimulated cyto-

chrome c-GFP release, whereas the inactive mdivi-1 derivative

F had virtually no effect on C8-Bid stimulated cytochrome

c-GFP release (Figure 5B, Table S3). Similar effects of mdivi-1

on STS-induced cytochrome c release were also observed

(Figure S3). Together our results indicate that mdivi-1 inhibits

the activity of the mitochondrial division dynamin Drp1 and as

a result impedes apoptosis early in the intrinsic pathway by

blocking Bax/Bak-dependent MOMP.

To further test this conclusion, we examined the effect of

mdivi-1 on C8-Bid-induced, BAK-dependent cytochrome c re-

lease from isolated wild-type murine liver mitochondria (Figure 6).

As assessed by western blot analysis of mitochondrial-derived

supernatant and pellet fractions with anti-cytochrome c, mdivi-1

derivatives had no effect on cytochrome c release in vitro when

tested alone (Figure 6A). In contrast and as expected, cyto-

chrome c release was greatly stimulated by the addition of re-

combinant active C8-Bid (Figure 6B). Significantly, the addition

of mdivi-1, as well as the active mdivi-1-like compounds B and

C, appreciably blocked C8-Bid induced cytochrome c release,

whereas mdivi-1 derivatives lacking efficacy either failed or

had relatively minor effects on cytochrome c release (Figure 6B,

compare compounds A–C to D–H). In addition, the ability of

mdivi-1 and active mdivi-1 compounds to inhibit C8-BID-

induced, BAX-dependent cytochrome c release was examined

in bak/bax double knockout mitochondria from MxCre bak�/�

bax�/� livers (Figure 6C) supplemented with monomeric full-

length BAX.

These findings indicated that mdivi-1 and active derivatives

inhibit cytochrome c release by preventing the full Bid-dependent

activation of Bax and Bak. Finally, as a control, we examined

whether mdivi-1 derivatives directly affect Bid-dependent Bax-

induced membrane permeabilization using an established large

unilamellar vesicle (LUV) release assay in which LUVs are pre-

loaded with fluorescein dextran (Kuwana et al., 2002). As shown

in Figure 6D, the amount of fluorescein dextran released from

LUVs by C8-Bid/Bax-induced permeabilization was not affected

by the addition of mdivi-1 and mdivi-1 derivatives, nor did the

mdivi-1 compounds cause significant permeabilization on their

own. These observations indicate that mdivi-1 does not block

MOMP by directly inhibiting C-8 Bid-activated Bax. Thus, to-

gether our data suggest that mdivi-1 attenuates MOMP by inhib-

iting the self-assembly of the mitochondrial division dynamin,

which functions upstream, together with Bcl-2 proteins to

directly stimulate Bcl-2-mediated outer membrane permeabili-

zation. Consistent with this conclusion, we observed that a signif-

icant amount of Drp1 is present and cofractionates with mito-

chondrial membranes in vitro (data not shown).
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DISCUSSION

The Mechanism of DRP Self-Assembly
In this study we identify mdivi-1 as the first, to our knowledge, se-

lective inhibitor of mitochondrial division dynamins. The mecha-

nism of mdivi-1 inhibition is distinct from the more general DRP

inhibitor, Dynasore, which was recently discovered in a chemical

screen for inhibitors of dynamin-1 GTPase activity (Macia et al.,

2006). Dynasore inhibits the GTP hydrolysis of dynamin-1, dyna-

min-2, and Drp1, in a noncompetitive manner by binding to the

GTPase domain in both assembled and unassembled states.

Our data demonstrate that mdivi-1 selectively inhibits the activity

of mitochondrial division DRPs by binding to an allosteric site

that does not exclusively act through the GTPase domain.

Upon binding, mdivi-1 creates or stabilizes a conformational

form of unassembled, likely dimeric Dnm1 that can bind GTP,

but at a significantly lower affinity. This mdivi-1-dependent con-

formational state is not able to assemble into a Dnm1 filament/

spiral, indicating that mdivi-1 inhibits division DRPs by blocking

their polymerization and not by causing disassembly. The be-

havior of the Dnm1/mdivi-1 complex has both similarities and

interesting differences as compared to the Dnm1 mutant

Dnm1K41A. Similar to Dnm1/mdivi-1, Dnm1K41A is able to

bind but not hydrolyze GTP; however, unlike Dnm1/mdivi-1,

Dnm1K41A is able to polymerize into GMPPCP-dependent spi-

ral-like structures (Naylor et al., 2006). This raises the possibility

mdivi-1 binding specifically blocks GTP-induced conformational

changes in Dnm1 that are necessary to promote self-assembly.

Interestingly, mdivi-1 also inhibits GTP hydrolysis by the assem-

bly-deficient dimer Dnm1G385D. This finding indicates that

Dnm1G385D is not a zero-order assembly intermediate, which

is consistent with our data that at higher concentrations

Dnm1G385D can undergo conformational changes required for

Figure 5. Mdivi-1 and Its Active Analogs

Attenuate Apoptosis

(A) FACS analysis of staurosporine-treated HeLa

cells in the presence and absence of the active

compound B (left panel) and inactive compound

G (right panel).

(B) Analysis of the effects of mdivi-1 derivatives

B and F on the release of cytochrome c stimulated

by C8-Bid injection of HeLa cells. The injection

marker is Texas Red (in red) and cytochrome c re-

lease is monitored with cytochrome c-GFP (in

green). Scale bar = 10 mm.

self-assembly (not shown). The mecha-

nism of action of mdivi-1 underscores

the conformational plasticity of DRPs

and the fact that regulated conforma-

tional changes are critical for the self-as-

sembly of these proteins.

The Role of Drp1 in MOMP
The molecular role of Drp1 in apoptosis in

mammalian cells has been elusive be-

cause, during apoptosis, Drp1-mediated

mitochondrial division and MOMP are
both early apoptotic events that have not been temporally re-

solved (Martinou and Youle, 2006). This temporal link raises

the possibility that Drp1 acts to permit or facilitate MOMP and

apoptosis as a result of mitochondrial fragmentation. Our data

suggest that Drp1 functions during MOMP in a manner indepen-

dent of mitochondrial division and fragmentation per se and thus

suggests that Drp1 possesses multiple functions in mammalian

cells. Remarkably, we found that mdivi-1 inhibits Bak/Bax-de-

pendent MOMP induced by C8-Bid in isolated mitochondria

in vitro, where EM analysis of mitochondria before and after

MOMP indicate that mitochondrial division does not occur (Scor-

rano et al., 2002). In addition, our data indicate that mdivi-1 does

not inhibit C8-Bid/Bax-dependent permeabilization of lipo-

somes, which lack Drp1, consistent with mdivi-1 inhibiting

MOMP via Drp1. Thus, our data suggest that Drp1 acts upstream

or together with Bcl-2 proteins to directly modulate MOMP.

Our analysis of mdivi-1 mechanism in mammalian cells indi-

cates that it blocks Drp1 self-assembly during apoptosis and

indicates that Drp1 self-assembly is critical for its role in

MOMP. One possibility is that Drp1 directly interacts and coas-

sembles with Bid-activated Bax/Bak, creating a complex that is

more active for both MOMP and mitochondrial division. Consis-

tent with this, as shown by both EM and light microscopy, Drp1

colocalizes with Bax in clusters on the mitochondrial outer

membrane associated with mitochondrial constriction sites

(Karbowski et al., 2002). In addition, the dynamic behavior ex-

hibited by Drp1 clusters on mitochondria is dramatically lost af-

ter Bax recruitment to mitochondria during apoptosis, indicat-

ing that the biochemical properties of Drp1 are altered in

a Bax-dependent manner (Wasiak et al., 2007). Thus, the

MOMP and division activities of a Drp1/Bax/Bak complex could

be altered by conformational changes or more indirectly via the

recruitment of lipids, such as cardiolipin, that have been shown
Developmental Cell 14, 193–204, February 2008 ª2008 Elsevier Inc. 201
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to be required in vitro for Bax-dependent membrane permeabi-

lization.

Another possible mechanism for Drp1 during apoptosis is that

it exerts its effects on MOMP by regulating the mitochondrial fu-

sion machinery. Recent studies have shown that in healthy cells

Bax and Bak are required to maintain normal levels of mitochon-

drial fusion activity and alter the behavior of the mitochondrial

outer membrane fusion protein Mfn2 (Karbowski et al., 2006).

This is in contrast to the role of Bak/Bax during apoptosis, where,

Figure 6. Mdivi-1 and Its Active Analogs Inhibit Activated Bax/Bak-

Dependent MOMP In Vitro

(A) Analysis of the effects of mdivi-1 and its analogs on MOMP by monitoring

cytochrome c release in vitro from murine liver mitochondria.

(B) Analysis of the effects of mdivi-1 and its analogs on MOMP in vitro as in (A)

with murine liver mitochondria stimulated by C8-Bid.

(C) Effects of mdivi-1 and its analogs on C8-Bid-stimulated MOMP depend on

the presence of Bax. The assays were as described in (A) and (B) using mito-

chondria isolated from the livers of polydIdC-treated MxCre bak�/� baxf/�

mice.

(D) mdivi-1 and its analogs do not directly inhibit Bid-activated Bax permeabi-

lization of large unilamellar vesicles. Permeabilization is monitored by the re-

lease of encapsulated fluorescein-dextran by filtration analysis as described

in the Experimental Procedures.
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when activated, Bax and Mfn2, like Drp1, are colocalized in clus-

ters on the outer membrane and mitochondrial fusion is attenu-

ated (Karbowski et al., 2002, 2004). Thus, it is possible that Drp1

recruitment to an activated Bax/Bak complex alters it, causing

inhibition of Mfn2-dependent fusion activity, which in turn facili-

tates MOMP, perhaps via the control of cristae structure (Ger-

main et al., 2005). Indeed, it has been reported that RNAi deple-

tion of Drp1 in HeLa cells does not affect the release of SMAC/

Diablo from mitochondria during apoptosis, but attenuates cyto-

chrome c release, which is sequestered in cristae (Estaquier and

Arnoult, 2007; Parone et al., 2006). In contrast, we observed that

in vitro mdivi-1 blocked C8-Bid Bax/Bak-dependent release of

SMAC/Diablo from mitochondria, indicating that mdivi-1 has

a general influence on MOMP and likely does not exert its effects

through changes in cristae structure (data not shown). This dis-

crepancy is likely the result of the vastly different approaches

used to inhibit Drp1 function in these studies (i.e., RNAi depletion

of Drp1 versus a drug-mediated block in Drp1 function).

Regardless of the mechanism, it seems likely that Bcl-2 and

mitochondrial division and fusion proteins have evolved to

form a regulatory network that functions to sense the health sta-

tus of cells. Recent studies in the invertebrate worm and fly

models have demonstrated a regulatory role for Drp1 in mito-

chondrial fragmentation and cell death, indicating that this net-

work is conserved. However, it appears that mitochondrial divi-

sion and fusion proteins are not essential components of the

apoptotic pathway (Abdelwahid et al., 2007; Estaquier and Ar-

noult, 2007; Frank et al., 2001; Goyal et al., 2007; Parone et al.,

2006; Wasiak et al., 2007). Consistent with this observation, we

find that mdivi-1 only partially blocks apoptosis by acting early

in the pathway to inhibit MOMP. Thus, it is possible that post-

translational modifications of Drp1 are regulated by stress in

cells and modulate Drp1 self-assembly to coordinately and pos-

itively activate apoptosis. Indeed, evidence suggests that Drp1 is

covalently modified by phosphorylation, ubiquitination, and su-

moylation, and that these modifications regulate Drp1 activity

(Harder et al., 2004; Nakamura et al., 2006; Taguchi et al., 2007).

The key positive regulatory role that Drp1 plays in apoptosis

makes it an appealing pharmaceutical target for neurodegener-

ative diseases, stroke, and myocardial infarction, where the inhi-

bition of apoptosis may be therapeutically beneficial. In addition,

Drp1 is a logical target for the neurodegenerative diseases Char-

cot-Marie Tooth type 2A and autosomal dominant optic atrophy,

which are caused by mutations in mitochondrial fusion proteins

Mfn2 and OPA1, respectively. One of the primary phenotypes

associated with loss of fusion in mammalian cells is loss of mito-

chondrial respiratory function, caused in part by loss of mtDNA

within a subset of mitochondria due to excessive mitochondria

division, which is likely an important factor contributing to the

etiology of these neurodegenerative diseases (Chan, 2006a,

2006b; Chen and Chan, 2006; Chen et al., 2005; Olichon et al.,

2006; Parone et al., 2006). Indeed, one of the fundamental roles

of mitochondrial fusion is to provide an exchange mechanism

that allows all mitochondria within a cell access to mtDNA and

its products (Hoppins et al., 2007). Attenuating mitochondrial di-

vision and increasing mitochondrial connectivity could benefit

some of the many heteroplasmic mtDNA-linked diseases in hu-

mans. Thus, our results showing that mdivi-1 is a selective inhib-

itor of mitochondrial division and apoptosis in mammalian cells
Inc.



Developmental Cell

Small Molecule Inhibitor of Mitochondrial Division
are of potentially great clinical significance because they have

revealed a promising novel target and treatment for many

diseases.

EXPERIMENTAL PROCEDURES

Chemical Genetic Screen for Mitochondrial Division Inhibitors

Strains: RDY84 (W303 background: ade2-1 his3-11,-15 trp1-1 can1-100

pdr1::KanR pdr3::His5+, a gift of Russell Dorer, Department of Pathology, Brig-

ham and Women’s Hospital) was crossed to JNY539 (Hermann et al., 1998,

W303 background: ade2-1 his3-11,-15 trp1-1 can1-100 fzo1::fzo1-1), diploids

were sporulated and tetrads were dissected to obtain ACY201 (ade2-1 his3-

11,-15 trp1-1 can1-100 pdr1::KanR pdr3::His5+ fzo1::fzo1-1). RDY84 was

crossed to JNY905 (ade2-1 his3-11,-15 trp1-1 can1-100 dnm1::His3), diploids

sporulated and tetrads dissected to obtain ACY208 (ade2-1 his3-11,-15 trp1-1

can1-100 pdr1::KanR pdr3::His5+ dnm1::His3).

The screen was conducted at the ICCB-Longwood Screening Facility (Bos-

ton, MA). ACY201 cells at a density of 1.2 3 104 cells per well were aliquoted

into 384-well plates using a Bio-Tek Precision 2000 Robot. One hundred nano-

liters of each compound (each at 5 mg/ml or �15 mM in DMSO) was added to

each well using a Seiko pin-transfer robot. Each plate was created in quadru-

plicate. Two copies were incubated at 24�C in a moist chamber and two were

incubated at 37�C in a moist chamber. After 3 days, cells in individual wells

were scored for growth by assessing turbidity. Representative small molecules

from the following commercial libraries were screened: Bionet, Cerep, May-

bridge, NCI Diversity, and Peakdale.

Commercially available structural analogs of mdivi-1 were identified using

the web-based ChemNavigator program. Small molecules tested in all as-

says were resuspended in DMSO at 10 mg/ml and stored desiccated at

�20�C. All commercial compounds used in this study were verified by mass

spectrometry.

Assays

All of the experiments described in this study using the small molecules were

double blinded. Representative images were chosen and quantification was

performed without knowledge of the identity of the compounds being tested.

The compounds were analyzed using a battery of established yeast and mam-

malian cell-based and in vitro assays. These are described in detail in the Sup-

plemental Data.

Supplemental Data

Supplemental Data include three figures, three tables, Supplemental Experi-

mental Procedures, and Supplemental References and are available at

http://www.developmentalcell.com/cgi/content/full/14/2/193/DC1/.
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