151 research outputs found

    Non-perturbative gluon evolution, squeezing, correlations and chaos in jets

    Get PDF
    We study evolution of colour gluon states in isolated QCD jet at the non-perturbative stage. Fluctuations of gluons are less than those for coherent states under specific conditions. This fact suggests that there gluon squeezed states can arise. The angular and rapidity dependencies of the normalized second-order correlation function for present gluon states are studied at this stage of jet evolution. It is shown that these new gluon states can have both sub-Poissonian and super-Poissonian statistics corresponding to, respectively, antibunching and bunching of gluons by analogy with squeezed photon states. We investigate the possibility of coexisting both squeezing and chaos using Toda criterion and temporal correlator analysis. It is shown that these effects may coexist under some conditions.Comment: 18 pages, 3 figures, Reported on IPPP Workshop on Multiparticle Production in QCD Jets (University of Durham, Durham, UK, 12-15 December 2001

    Gas phase Raman spectroscopy: Comparison of continuous wave and cavity based methods

    Get PDF
    © 2018 The Author(s). Comparison of cavity-enhanced Raman spectroscopy to continuous wave detection for gas phase molecules in air. We show continuous measurements with calculated emission and discuss the potential benefits (two orders more signal) of using a cavity.EPSR

    Chaos assisted instanton tunneling in one dimensional perturbed periodic potential

    Full text link
    For the system with one-dimensional spatially periodic potential we demonstrate that small periodic in time perturbation results in appearance of chaotic instanton solutions. We estimate parameter of local instability, width of stochastic layer and correlator for perturbed instanton solutions. Application of the instanton technique enables to calculate the amplitude of the tunneling, the form of the spectrum and the lower bound for width of the ground quasienergy zone

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    Kramers-Moyall cumulant expansion for the probability distribution of parallel transporters in quantum gauge fields

    Get PDF
    A general equation for the probability distribution of parallel transporters on the gauge group manifold is derived using the cumulant expansion theorem. This equation is shown to have a general form known as the Kramers-Moyall cumulant expansion in the theory of random walks, the coefficients of the expansion being directly related to nonperturbative cumulants of the shifted curvature tensor. In the limit of a gaussian-dominated QCD vacuum the obtained equation reduces to the well-known heat kernel equation on the group manifold.Comment: 7 page

    The spatial correlations in the velocities arising from a random distribution of point vortices

    Full text link
    This paper is devoted to a statistical analysis of the velocity fluctuations arising from a random distribution of point vortices in two-dimensional turbulence. Exact results are derived for the correlations in the velocities occurring at two points separated by an arbitrary distance. We find that the spatial correlation function decays extremely slowly with the distance. We discuss the analogy with the statistics of the gravitational field in stellar systems.Comment: 37 pages in RevTeX format (no figure); submitted to Physics of Fluid

    IMPLEMENTATION OF A HIGH-EFFICIENT ELEMENTARY HEATER IN THE CIRCUIT OF AN EXISTING EVAPORATOR WITH THE PURPOSE OF SAVING HEATING STEAM

    Full text link
    he paper gives a brief description of the method for producing alumina (Al2O3) by the Bayer method.This work was supported by the Russian Foundation for Basic Research (grant # 19-53-55002)
    corecore