500 research outputs found

    X-Linked Lymphoproliferative Syndrome and Common Variable Immunodeficiency May Not Be Differentiated by SH2D1A and XIAP/BIRC4 Genes Sequence Analysis

    Get PDF
    The X-linked lymphoproliferative syndrome (XLP) is a rare, inherited immunodeficiency characterized by recurrent episodes of hemophagocytic lymphohistiocytosis, hypogammaglobulinemia, and/or lymphomas. Recently, X-linked inhibitor of apoptosis (XIAP/BIRC4) gene defects, in families with XLP but without SH2D1A gene defects, has been defined. The distinction from primary immunodeficiencies with a defined genetic cause is mandatory. A six-year-old male patient was admitted with the complaints of persistent general lymphadenopathy, for two years had fever, bilateral cervical multiple microlymphadenopathy, hepatic/splenic enlargement with laboratory findings as decreased serum immunoglobulins, negative EBV VCA IgM (viral capsid antigen) and anti-EBV EA (antibody to early D antigen), positive EBV VCA IgG (viral capsid antigen) and EBV EBNA (antibody to nuclear antigen). SH2D1A gene analysis was negative. XIAP/BIRC4 sequencing revealed two novel single nucleotide variants (exon 7, 1978G > A, and 1996T > A) in the 3′UTR of the gene in both patient and mother which were not disease causing. XIAP protein expression was found to be normal. The clinical and laboratory resemblance, no gene mutations, and normal XIAP protein expression led us to think that there may be another responsible gene for XLP. The patient will to be followed up as CVID until he presents new diagnostic signs or until the identification of a new gene

    An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex

    Get PDF
    BACKGROUND: Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. OBJECTIVE: This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). METHODS: Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. RESULTS: We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of gamma-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Salpha and Emu regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. CONCLUSION: INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis

    Granulomatous pyoderma preceding chronic recurrent multifocal osteomyelitis triggered by vaccinations in a two-year-old boy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Chronic recurrent multifocal osteomyelitis is a rare, systemic, aseptic, inflammatory disorder that involves different sites. Pathogenesis of chronic recurrent multifocal osteomyelitis is currently unknown.</p> <p>Case presentation</p> <p>A two-year-old Caucasian boy, diagnosed with chronic recurrent multifocal osteomyelitis with granulomatous pyoderma following routine vaccinations is presented for the first time in the literature.</p> <p>Conclusion</p> <p>We conclude that antigen exposures might have provoked this inflammatory condition for our case. Skin and/or bone lesions following vaccinations should raise suspicion of an inflammatory response such as chronic recurrent multifocal osteomyelitis only after thorough evaluation for chronic infection, autoimmune, immunodeficiency or vasculitic diseases.</p

    Intra-articular vs. systemic administration of etanercept in antigen-induced arthritis in the temporomandibular joint. Part II: mandibular growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint (TMJ) arthritis in children causes alterations in the craniomandibular growth. Resultant abnormalities include; condylar erosions, a posterior mandibular rotation pattern, micrognathia, malocclusion with an anterior open bite, altered joint and muscular function occasionally associated with pain. These alterations may be prevented by early aggressive anti-inflammatory intervention. Previously, we have shown that intra-articular (IA) corticosteroid reduces TMJ inflammation but causes additional mandibular growth inhibition in young rabbits. Local blockage of TNF-α may be an alternative treatment approach against TMJ involvement in juvenile idiopathic arthritis (JIA). We evaluated the anti-inflammatory effect of IA etanercept compared to subcutaneous etanercept in antigen-induced TMJ-arthritis in young rabbits in terms of mandibular growth. This article (Part II) presents the data and discussion on the effects on facial growth. In Part I the anti-inflammatory effects of systemic and IA etanercept administration are discussed.</p> <p>Methods</p> <p>Arthritis was induced and maintained in the TMJs of 10-week old pre-sensitized rabbits (n = 42) by four repeated IA TMJ injections with ovalbumin, over a 12-week period. One group was treated weekly with systemic etanercept (0.8 mg/kg) (n = 14), another group (n = 14) received IA etanercept (0.1 mg/kg) bilaterally one week after induction of arthritis and one group (n = 14) served as an untreated arthritis group receiving IA TMJ saline injections. Head computerized tomographic scans were done before arthritis was induced and at the end of the study. Three small tantalum implants were inserted into the mandible, serving as stable landmarks for the super-impositions. Nineteen variables were evaluated in a mandibular growth analysis for inter-group differences. All data was evaluated blindedly. ANOVA and T-tests were applied for statistical evaluation using p < 0.05 as significance level.</p> <p>Results</p> <p>Significant larger mandibular growth disturbances were observed in the group receiving IA saline injections compared with the systemic etanercept group. The most pronounced unfavourable posterior mandibular rotation pattern was observed in the group receiving IA saline injections.</p> <p>Conclusion</p> <p>Intervention with systemic etanercept monotherapy equivalent to the recommended human dose allows a mandibular growth towards an original morphology in experimental TMJ arthritis. Systemic administrations of etanercept are superior to IA TMJ administration of etanercept in maintaining mandibular vertical growth.</p

    Intra-articular vs. systemic administration of etanercept in antigen-induced arthritis in the temporomandibular joint. Part II: mandibular growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint (TMJ) arthritis in children causes alterations in the craniomandibular growth. Resultant abnormalities include; condylar erosions, a posterior mandibular rotation pattern, micrognathia, malocclusion with an anterior open bite, altered joint and muscular function occasionally associated with pain. These alterations may be prevented by early aggressive anti-inflammatory intervention. Previously, we have shown that intra-articular (IA) corticosteroid reduces TMJ inflammation but causes additional mandibular growth inhibition in young rabbits. Local blockage of TNF-α may be an alternative treatment approach against TMJ involvement in juvenile idiopathic arthritis (JIA). We evaluated the anti-inflammatory effect of IA etanercept compared to subcutaneous etanercept in antigen-induced TMJ-arthritis in young rabbits in terms of mandibular growth. This article (Part II) presents the data and discussion on the effects on facial growth. In Part I the anti-inflammatory effects of systemic and IA etanercept administration are discussed.</p> <p>Methods</p> <p>Arthritis was induced and maintained in the TMJs of 10-week old pre-sensitized rabbits (n = 42) by four repeated IA TMJ injections with ovalbumin, over a 12-week period. One group was treated weekly with systemic etanercept (0.8 mg/kg) (n = 14), another group (n = 14) received IA etanercept (0.1 mg/kg) bilaterally one week after induction of arthritis and one group (n = 14) served as an untreated arthritis group receiving IA TMJ saline injections. Head computerized tomographic scans were done before arthritis was induced and at the end of the study. Three small tantalum implants were inserted into the mandible, serving as stable landmarks for the super-impositions. Nineteen variables were evaluated in a mandibular growth analysis for inter-group differences. All data was evaluated blindedly. ANOVA and T-tests were applied for statistical evaluation using p < 0.05 as significance level.</p> <p>Results</p> <p>Significant larger mandibular growth disturbances were observed in the group receiving IA saline injections compared with the systemic etanercept group. The most pronounced unfavourable posterior mandibular rotation pattern was observed in the group receiving IA saline injections.</p> <p>Conclusion</p> <p>Intervention with systemic etanercept monotherapy equivalent to the recommended human dose allows a mandibular growth towards an original morphology in experimental TMJ arthritis. Systemic administrations of etanercept are superior to IA TMJ administration of etanercept in maintaining mandibular vertical growth.</p

    Ingestion of micronutrient fortified breakfast cereal has no influence on immune function in healthy children: A randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study investigated the influence of 2-months ingestion of an "immune" nutrient fortified breakfast cereal on immune function and upper respiratory tract infection (URTI) in healthy children during the winter season.</p> <p>Methods</p> <p>Subjects included 73 children (N = 42 males, N = 31 females) ranging in age from 7 to 13 years (mean ± SD age, 9.9 ± 1.7 years), and 65 completed all phases of the study. Subjects were randomized to one of three groups--low, moderate, or high fortification--with breakfast cereals administered in double blinded fashion. The "medium" fortified cereal contained B-complex vitamins, vitamins A and C, iron, zinc, and calcium, with the addition of vitamin E and higher amounts of vitamins A and C, and zinc in the "high" group. Immune measures included delayed-typed hypersensitivity, global IgG antibody response over four weeks to pneumococcal vaccination, salivary IgA concentration, natural killer cell activity, and granulocyte phagocytosis and oxidative burst activity. Subjects under parental supervision filled in a daily log using URTI symptoms codes.</p> <p>Results</p> <p>Subjects ingested 3337 ± 851 g cereal during the 2-month study, which represented 14% of total diet energy intake and 20-85% of selected vitamins and minerals. Despite significant increases in nutrient intake, URTI rates and pre- to- post-study changes in all immune function measures did not differ between groups.</p> <p>Conclusions</p> <p>Data from this study indicate that ingestion of breakfast cereal fortified with a micronutrient blend for two winter months by healthy, growing children does not significantly influence biomarkers for immune function or URTI rates.</p

    X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production

    Get PDF
    Germline mutations in five autosomal genes involved in interleukin (IL)-12–dependent, interferon (IFN)-γ–mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-κB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defective IFN-γ secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-κB/c-Rel–mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-κB activators, such as tumor necrosis factor-α, IL-1β, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-κB/c-Rel–mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans

    Effect of Multivitamin Supplementation on Measles Vaccine Response among HIV-exposed Uninfected Tanzanian Infants.

    Get PDF
    Immunization and nutritional interventions are mainstays of child health programs in sub-Saharan Africa, yet few published data exist on their interactions. HIV-exposed (but uninfected) infants enrolled in a randomized placebo-controlled trial of multivitamin supplements (vitamins B complex, C, and E) conducted in Tanzania were sampled for an assessment of measles IgG quantity and avidity at 15 to 18 months. Infants were vaccinated between 8.5 and 12 months of age, and all mothers received high-dose multivitamins as the standard of care. Of 201 HIV-exposed infants who were enrolled, 138 (68.7%) were seropositive for measles. There were no effects of infant multivitamin supplementation on measles seroconversion proportions, IgG concentrations, or IgG avidity (P > 0.05). The measles seroconversion proportion was greater for HIV-exposed infants vaccinated at 10 to 11 months of age than for those vaccinated at 8.5 to 10 months (P = 0.032) and greater for infants whose mothers had a CD4 T-cell count of <200 cells/μl than for infants whose mothers had a CD4 T-cell count of >350 cells/μl (P = 0.039). Stunted infants had a significantly decreased IgG quantity compared to nonstunted infants (P = 0.012). As for measles avidity, HIV-exposed infants vaccinated at 10 to 11 months had increased antibody avidity compared to those vaccinated at 8.5 to 10 months (P = 0.031). Maternal CD4 T-cell counts of <200 cells/μl were associated with decreased avidity compared to counts of >350 cells/μl (P = 0.047), as were lower infant height-for-age z-scores (P = 0.016). Supplementation with multivitamins containing B complex, C, and E does not appear to improve measles vaccine responses for HIV-exposed infants. Studies are needed to better characterize the impact of maternal HIV disease severity on the immune system development of HIV-exposed infants and the effect of malnutrition interventions on vaccine responses. (This study has been registered at ClinicalTrials.gov under registration no. NCT00197730.)
    corecore