39 research outputs found

    Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser

    No full text
    Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å−1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å−1, and a system response function of 150 fs

    Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2_2

    Full text link
    Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism, but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2_2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic-structure basis for a family of novel phenomena and functionalities in fields ranging from topological matter to spintronics, that are based on the unconventional time-reversal symmetry breaking in altermagnets

    Spin texture of time reversal symmetry invariant surface states on W 110

    Get PDF
    We find in the case of W 110 previously overlooked anomalous surface states having their spin locked at right angle to their momentum using spin resolved momentum microscopy. In addition to the well known Dirac like surface state with Rashba spin texture near the point, we observe a tilted Dirac cone with circularly shaped cross section and a Dirac crossing at 0.28 amp; 8201; amp; 8201; amp; 8201; within the projected bulk band gap of tungsten. This state has eye catching similarities to the spin locked surface state of a topological insulator. The experiments are fortified by a one step photoemission calculation in its density matrix formulatio

    Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

    Get PDF
    The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e–e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from −20 to −1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 μm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field −21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments

    Time of flight photoelectron momentum microscopy with 80 500 MHz photon sources electron optical pulse picker or bandpass pre filter

    Get PDF
    The small time gaps of synchrotron radiation in conventional multi bunch mode 100 500 MHz or laser based sources with high pulse rate 80 MHz are prohibitive for time of flight ToF based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20 100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron optical pulse picking with any desired repetition period. Aberration free momentum distributions have been recorded at reduced pulse periods of 5 MHz at MAX II and 1.25 MHz at BESSY II . The approach is compared with two alternative solutions a bandpass pre filter here a hemispherical analyzer or a parasitic four bunch island orbit pulse train, coexisting with the multi bunch pattern on the main orbit. Chopping in the time domain or bandpass pre selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100 500 MHz synchrotrons, highly repetitive lasers or cavity enhanced high harmonic sources. The high photon flux of a UV laser 80 MHz, lt;1 meV bandwidth facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region of interest ROI down to lt;800 nm. In this novel approach to sub m ARPES the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spo

    Charge transfer in the novel donor-acceptor complexes tetra- and hexamethoxypyrene with tetracyanoquinodimethane studied by HAXPES

    No full text
    The effect of charge transfer (CT) in complexes of the donors tetra- and hexamethoxyprene (TMP and HMP) with the classical acceptor tetracyanoquinodimethane (TCNQ) was studied using hard X-ray photoemission (HAXPES). Microcrystals of the complex were grown via vapour diffusion from donor-acceptor mixtures. The bulk sensitivity of HAXPES at a photon energy of 6 key completely eliminates the problem of surface contamination for such delicate organic materials grown from solution. The donor molecules were produced using a novel synthesis route functionalizing polycyclic aromatic hydrocarbons at their periphery. For comparison, spectra were also taken from thin-film samples of the same compounds produced via co-deposition in UHV. Upon complex formation, the oxygen 1s core-level spectra (being a fingerprint of the methoxy-group of the donors) change from the single-line spectrum of pure HMP (TMP) to a spectrum with two distinct lines shifted by 1.4 (0.9) eV and 2.6 (2.3) eV with respect to the position of the oxygen 1s line of the pure donors. The nitrogen 1s spectra (being a fingerprint of the cyano-group in the acceptor) show two peaks as well with a corresponding shift of 0.9 eV and 2.0 eV in comparison with the leading line of pure TCNQ in opposite direction to the oxygen is spectra. These values are substantially larger than shifts in near edge X-ray absorption fine structure (NEXAFS) and ultraviolet photoelectron spectroscopy (UPS) spectra of the same complexes. The changes in the spectra are discussed in terms of the CT in the complexes. Residues of pure donor and acceptor materials in the microcrystal fractions of the complexes are evident from the presence of non-shifted lines. Peak-area analysis reveals that charge is transferred to a fraction of 60% of the molecules in the complexes. (C) 2012 Elsevier B.V. All rights reserved

    Multi MHz time of flight electronic bandstructure imaging of graphene on Ir 111

    No full text
    In the quest for detailed spectroscopic insight into the electronic structure at solid surfaces in a large momentum range, we have developed an advanced experimental approach. It combines the 3D detection scheme of a time-of-flight momentum microscope with an optimized filling pattern of the BESSY II storage ring. Here, comprehensive data sets covering the full surface Brillouin zone have been used to study faint substrate-film hybridization effects in the electronic structure of graphene on Ir(111), revealed by a pronounced linear dichroism in angular distribution. The method paves the way to 3D electronic bandmapping with unprecedented data recording efficiency
    corecore