17 research outputs found

    Motion of a driven tracer particle in a one-dimensional symmetric lattice gas

    Full text link
    We study the dynamics of a tracer particle subject to a constant driving force EE in a one-dimensional lattice gas of hard-core particles whose transition rates are symmetric. We show that the mean displacement of the driven tracer grows in time, tt, as αt \sqrt{\alpha t}, rather than the linear time dependence found for driven diffusion in the bath of non-interacting (ghost) particles. The prefactor α\alpha is determined implicitly, as the solution of a transcendental equation, for an arbitrary magnitude of the driving force and an arbitrary concentration of the lattice gas particles. In limiting cases the prefactor is obtained explicitly. Analytical predictions are seen to be in a good agreement with the results of numerical simulations.Comment: 21 pages, LaTeX, 4 Postscript fugures, to be published in Phys. Rev. E, (01Sep, 1996

    Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale

    No full text
    Estimates of soil organic C (SOC) storage and their variability at various spatial scales are essential to better understand the global C cycle, estimate C sink capacity, identify effective C sequestration strategies, and quantify the amount of SOC sequestered during a specific period of time. This study used a geographically weighted regression (GWR) approach to predict the SOC pool at a regional scale. The GWR considers varying relationships between the SOC pool and environmental variables across the study area. The range of the variogram of SOC observations was used to define a search radius in the GWR. Terrain attributes, climate data, land use data, bedrock geology, and normalized difference vegetation index data were used to predict the SOC pool for seven states in the midwestern United States. The prediction accuracy of this SOC pool map was compared with the multiple linear regression (MLR) and regression kriging (RK) approaches. Higher contrast and wider variability (1.73-39.3 kg m(-2)) of the SOC pool were predicted with lower global prediction errors (mean estimation error = -0.11 kg m(-2), RMSE = 6.40 kg m(-2)) in GWR compared with the other approaches. A relative improvement of 22% over MLR and 2% over RK was observed in SOC prediction. The total SOC pool to the 0.5-m depth was estimated to be 6.22 Pg. The results suggest that the GWR approach is a promising tool for regional-scale SOC prediction
    corecore