195 research outputs found

    Isolation and characterisation of microorganisms contaminating herbal infusion sold in Minna, Nigeria

    Get PDF
    The microbiological assessment of ten herbal infusion samples from ten different locations in Minna, Niger State was investigated. The assessment of the microbial contamination on the herbal products was carried out, using standard methods. Pour plate method was used to cultivate serially diluted portions of the medicinal plant infusion samples. The results revealed that all the herbal preparations had the presence of microbial contaminants. The total heterotrophic counts of the different herbal samples ranged from 0 cfu/mL to 25.0 × 108cfu/mL while the total fungal counts ranged from 3.0×106cfu/mL to 3.5×108cfu/mL. The total viable bacteria counts showed that the highest counts of 25.0 × 108cfu/mL was recorded in the sample from Bosso and the least counts of 0 cfu/mL from Kasuwan-Gwari while the total fungal counts showed that the highest count of 3.5×108cfu/mL was found in the sample obtained from FUT campus and the least counts of 3.0×106cfu/mL in the sample from Mai-Kunkele. One way analysis of variance (ANOVA) showed that there was significant difference (p<0.05) in the microbial load of the herbal infusions from each location. The microbial isolates identified were E. coli, Staphylococcus aureus, Shigella sp, Klebsiella sp, Pseudomonas sp, Micrococcus sp, Salmonella sp, Aspergillus sp, Penicillium sp and Saccharomyces cerevisaie. Members of the genus Aspergillus were found to be predominant. This suggests that the herbal infusion harbors microorganisms that could be hazardous to human health and hence producers should maintain the highest possible level of hygiene during the processing and packaging of the products in order to ensure safety of the products

    Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the rr-process calculations

    Full text link
    The rare-earth peak in the rr-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in rr-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. 158^{158}Nd, 160^{160}Pm, 162^{162}Sm, and 164166^{164-166}Gd have been measured for the first time and the precisions for 156^{156}Nd, 158^{158}Pm, 162,163^{162,163}Eu, 163^{163}Gd, and 164^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2nS_{2n} and neutron pairing energy metrics DnD_n. The data do not support the existence of a subshell closure at N=100N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated rr-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar rr-process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter

    Bathymetric Survey and Volumetric Analysis for Sustainable Management: Case Study of Suleja Dam, Niger State, Nigeria

    Get PDF
    Ocean floor and the shape of the shoreline are major influencers of the changes in tidal propagation. Bathymetry; a survey operation aimed at determining the nature of the underwater level and topography of a water body’s bed level plays a cogent role in the determination of both the shape of the shoreline and the ocean floor thereby aiding the monitoring and spatio-temporal modelling of the changes in tidal propagation as much as it ensures the availability of hydro-data which is the foundation of a Maritime Database Management System (MDBMS). This work presents the findings of the bathymetric survey and volumetric analysis of Suleja Dam located in the North central Region of Nigeria. The Differential Global Positioning System receiver (DGPS) (Promark 3), automatic level, echomap 50s in conjunction with the engine boat were used during this research. The data acquired was processed using the GNSS solutions software with the chart plotted in surfer 9 software environment. The surface area of the dam was discovered to be 24.64ha less than the designed area. Also the volume of water was found to be 3.6 x 106m3 in contrast to the design volume of 34.7x106m3. It was also observed that the lowest water depth was 0.56m and the highest water depth was 22.06m, therefore a difference of 5.94m was obtained as against the initial construction depth of 28.00m. The undulating nature of the reservoir bed and the difference in volume of water and surface area covered by the dam are pointers and clear indications of sedimentation and siltation process going on in the dam. Keywords: Bathymetry, sounding, chart, reservoir, MDBM

    Selective Modulation of α5 GABAA Receptors Exacerbates Aberrant Inhibition at Key Hippocampal Neuronal Circuits in APP Mouse Model of Alzheimer’s Disease

    Get PDF
    Selective negative allosteric modulators (NAMs), targeting α5 subunit-containing GABAA receptors (GABAARs) as potential therapeutic targets for disorders associated with cognitive deficits, including Alzheimer’s disease (AD), continually fail clinical trials. We investigated whether this was due to the change in the expression of α5 GABAARs, consequently altering synaptic function during AD pathogenesis. Using medicinal chemistry and computational modeling, we developed aqueous soluble hybrids of 6,6-dimethyl-3-(2-hydroxyethyl) thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophene-4(5H)-one, that demonstrated selective binding and high negative allosteric modulation, specifically for the α5 GABAAR subtypes in constructed HEK293 stable cell-lines. Using a knock-in mouse model of AD (APPNL−F/NL−F), which expresses a mutant form of human amyloid-β (Aβ), we performed immunofluorescence studies combined with electrophysiological whole-cell recordings to investigate the effects of our key molecule, α5-SOP002 in the hippocampal CA1 region. In aged APPNL−F/NL−F mice, selective preservation of α5 GABAARs was observed in, calretinin- (CR), cholecystokinin- (CCK), somatostatin- (SST) expressing interneurons, and pyramidal cells. Previously, we reported that CR dis-inhibitory interneurons, specialized in regulating other interneurons displayed abnormally high levels of synaptic inhibition in the APPNL−F/NL−F mouse model, here we show that this excessive inhibition was “normalized” to control values with bath-applied α5-SOP002 (1 μM). However, α5-SOP002, further impaired inhibition onto CCK and pyramidal cells that were already largely compromised by exhibiting a deficit of inhibition in the AD model. In summary, using a multi-disciplinary approach, we show that exposure to α5 GABAAR NAMs may further compromise aberrant synapses in AD. We, therefore, suggest that the α5 GABAAR is not a suitable therapeutic target for the treatment of AD or other cognitive deficits due to the widespread neuronal-networks that use α5 GABAARs

    Compressed gas domestic aerosol valve design using high viscous product

    Get PDF
    Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas) propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air) to replace VOCs (Volatile Organic Compounds) and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using “bubbly flow” in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp) because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray

    Understanding biological responses to degraded hydromorphology and multiple stresses. Deliverable 3.2 of REFORM (REstoring rivers FOR effective catchment Management), a Collaborative project (large-scale integrating project) funded by the European Commission within the 7th Framework Programme under Grant Agreement 282656

    Get PDF
    The aim of this deliverable is to conceptually model and empirically test the response of biota to the effects of both hydromorphological pressures acting in concert with one another or with other types of pressures. Best use is made of existing large national monitoring datasets (Denmark, UK, Finland, France, Germany, Austria & WISER datasets), case studies and modeling to provide evidence of multiple stressors interacting to alter river biota (Biological Quality Elements: BQE)

    Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    Get PDF
    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells

    Effects of a selective mu opioid receptor agonist and naloxone on the intake of sodium chloride solutions

    Full text link
    Endogenous opioid peptides are thought to play a role in mediating the palatability or rewarding aspects of sweet tastes. There is also evidence, however, which suggests that opioids may influence the preference for the taste of salt as well. In the present studies, we measured the effects of central administration of naloxone and the mu agonist [ d -Ala 2 ,MePhe 4 ,Gly-ol 5 ]enkephalin (DAGO) on the ingestion of salt solutions. In non-deprived rats given a choice of water and 0.6% saline, ICV injections of DAGO (1 and 3 nmol) significantly increased the intake of 0.6% saline; baseline water intake was minimal and was unaffected by DAGO. When rats were given a choice between water and 1.7% saline, DAGO stimulated both water and saline intake. Because 1.7% saline is a hypertonic solution, the increase in water intake may have been secondary to saline intake. In rats on a deprivation schedule in which water and 0.6% saline were available for only 2–3 h/day, there was a tendency for DAGO to increase 0.6% saline intake and decrease water intake, though these effects were not significant. In rats given water and 1.7% saline, DAGO increased saline intake and had no effect on water intake. Naloxone was also tested in water-deprived rats. Naloxone (20 and 50 µg) significantly decreased 0.6% saline intake; baseline water intake was low (3–5 ml) and was unaffected by naloxone. When rats were given a choice between water and 1.7% saline, naloxone (50 µg) significantly reduced water intake, while intake of 1.7% saline was slightly increased. These results suggest a role for central mu opioid receptors in mediating the preference for salt solutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46331/1/213_2005_Article_BF02245792.pd
    corecore