288 research outputs found

    Upper estimate of martingale dimension for self-similar fractals

    Full text link
    We study upper estimates of the martingale dimension dmd_m of diffusion processes associated with strong local Dirichlet forms. By applying a general strategy to self-similar Dirichlet forms on self-similar fractals, we prove that dm=1d_m=1 for natural diffusions on post-critically finite self-similar sets and that dmd_m is dominated by the spectral dimension for the Brownian motion on Sierpinski carpets.Comment: 49 pages, 7 figures; minor revision with adding a referenc

    Hydrodynamic limit for a zero-range process in the Sierpinski gasket

    Full text link
    We prove that the hydrodynamic limit of a zero-range process evolving in graphs approximating the Sierpinski gasket is given by a nonlinear heat equation. We also prove existence and uniqueness of the hydrodynamic equation by considering a finite-difference scheme.Comment: 24 pages, 1 figur

    The Vlasov continuum limit for the classical microcanonical ensemble

    Full text link
    For classical Hamiltonian N-body systems with mildly regular pair interaction potential it is shown that when N tends to infinity in a fixed bounded domain, with energy E scaling quadratically in N proportional to e, then Boltzmann's ergodic ensemble entropy S(N,E) has the asymptotic expansion S(N,E) = - N log N + s(e) N + o(N); here, the N log N term is combinatorial in origin and independent of the rescaled Hamiltonian while s(e) is the system-specific Boltzmann entropy per particle, i.e. -s(e) is the minimum of Boltzmann's H-function for a perfect gas of "energy" e subjected to a combination of externally and self-generated fields. It is also shown that any limit point of the n-point marginal ensemble measures is a linear convex superposition of n-fold products of the H-function-minimizing one-point functions. The proofs are direct, in the sense that (a) the map E to S(E) is studied rather than its inverse S to E(S); (b) no regularization of the microcanonical measure Dirac(E-H) is invoked, and (c) no detour via the canonical ensemble. The proofs hold irrespective of whether microcanonical and canonical ensembles are equivalent or not.Comment: Final version; a few typos corrected; minor changes in the presentatio

    Measures on Banach Manifolds and Supersymmetric Quantum Field Theory

    Full text link
    We show how to construct measures on Banach manifolds associated to supersymmetric quantum field theories. These measures are mathematically well-defined objects inspired by the formal path integrals appearing in the physics literature on quantum field theory. We give three concrete examples of our construction. The first example is a family μPs,t\mu_P^{s,t} of measures on a space of functions on the two-torus, parametrized by a polynomial PP (the Wess-Zumino-Landau-Ginzburg model). The second is a family \mu_\cG^{s,t} of measures on a space \cG of maps from 1\P^1 to a Lie group (the Wess-Zumino-Novikov-Witten model). Finally we study a family μM,Gs,t\mu_{M,G}^{s,t} of measures on the product of a space of connection s on the trivial principal bundle with structure group GG on a three-dimensional manifold MM with a space of \fg-valued three-forms on M.M. We show that these measures are positive, and that the measures \mu_\cG^{s,t} are Borel probability measures. As an application we show that formulas arising from expectations in the measures \mu_\cG^{s,1} reproduce formulas discovered by Frenkel and Zhu in the theory of vertex operator algebras. We conjecture that a similar computation for the measures μM,SU(2)s,t,\mu_{M,SU(2)}^{s,t}, where MM is a homology three-sphere, will yield the Casson invariant of M.M.Comment: Minor correction

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Potential theory results for a class of PDOs admitting a global fundamental solution

    Get PDF
    We outline several results of Potential Theory for a class of linear par-tial differential operators L of the second order in divergence form. Under essentially the sole assumption of hypoellipticity, we present a non-invariant homogeneous Harnack inequality for L; under different geometrical assumptions on L (mainly, under global doubling/Poincar\ue9 assumptions), it is described how to obtainan invariant, non-homogeneous Harnack inequality. When L is equipped with a global fundamental solution \u393, further Potential Theory results are available (such as the Strong Maximum Principle). We present some assumptions on L ensuring that such a \u393 exists
    corecore