14 research outputs found

    Blood flow controls bone vascular function and osteogenesis

    Get PDF
    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system

    Vascular niches for disseminated tumour cells in bone

    Get PDF
    The vasculature of the skeletal system regulates osteogenesis and hematopoiesis, in addition to its primary function as a transportation network. Recent studies suggest that the vasculature in bone regulates multiple steps involved in the metastatic cascade. Matrix and growth factor abundant vascular microenvironments in bone not only provide a fertile soil for the metastatic growth but also support the dormancy of Disseminated Tumour Cells (DTCs). Interestingly, vasculature also seems to direct the reactivation of dormant DTCs. Targeting such early steps of bone metastasis by directing therapies against vascular niches can lead to the development of effective therapeutic strategies that delay or even prevent the metastatic relapse. However, this would require a detailed understanding of the regulatory mechanisms that govern the interaction between endothelial cells and DTCs in the early stages of bone metastasis. This review aims to highlight the importance of vascular niches and outline their newly identified roles during bone metastasis

    Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy

    No full text
    Tumor formation involves substantial cell division and genetic instability, but the relationship between quiescent cancer stem cells (CSC) and dividing progenitors in these events is poorly understood. Likewise, the implication of aneuploid cells in solid tumors is uncertain. CSCs are postulated to contribute to tumor dormancy and present a formidable obstacle in limiting treatment outcomes for a majority of cancers, whereas the genetic heterogeneity conjured by aneuploid cells may influence tumor drug resistance. However, direct confirmation of these events remains forthcoming. In the present study, we addressed the identification of tumor dormancy in terms of isolation of therapy-refractory residual tumor cells from tumors that persist in a state of quiescence as label-retaining cells. The choices of label were PKH67/PKH26 dyes that irreversibly bind to the lipid bilayer on cell membranes and get equally partitioned among daughter cells subsequent to each cell division. Consequent characterization revealed that label-retaining cells encompass two different populations capable of remaining in a state of quiescence, i.e., stem-like cells and aneuploid cells. The former express a reversibility of quiescence through retention of functionality and also exhibit therapeutic refractoriness; the latter seem to be either quiescent or proliferation-arrested at steady-state. Subsequent to exposure to selective pressure of chemotherapy, a fraction of these cells may acquire the potential to proliferate in a drug-refractory manner and acquire stem-like characteristics. Collectively, the findings of the present study reveal that tumor-derived CSCs and aneuploid populations contribute to drug resistance and tumor dormancy in cancer progression

    Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone, Nature

    No full text
    The mammalian skeletal system harbours a hierarchical system of mesenchymal stem cells, osteoprogenitors and osteoblasts sustaining lifelong bone formation. Osteogenesis is indispensable for the homeostatic renewal of bone as well as regenerative fracture healing, but these processes frequently decline in ageing organisms, leading to loss of bone mass and increased fracture incidence. Evidence indicates that the growth of blood vessels in bone and osteogenesis are coupled, but relatively little is known about the underlying cellular and molecular mechanisms. Here we identify a new capillary subtype in the murine skeletal system with distinct morphological, molecular and functional properties. These vessels are found in specific locations, mediate growth of the bone vasculature, generate distinct metabolic and molecular microenvironments, maintain perivascular osteoprogenitors and couple angiogenesis to osteogenesis. The abundance of these vessels and associated osteoprogenitors was strongly reduced in bone from aged animals, and pharmacological reversal of this decline allowed the restoration of bone mass. Blood vessels mediate the transport of circulating cells, oxygen, nutrients and waste products, but also provide so-called angiocrine signals controlling organ growth and homeostasis In the mammalian skeletal system, growth of the vascular network is regulated by signals provided by chondrocytes and other bone cells, among which the vascular endothelial growth factor (VEGF) is best understood Vessel architecture and bone oxygenation Previous work has shown that molecular and structural differences distinguish arteries and distal arterioles in bone from sinusoidal capillaries Identification of a distinct EC subpopulation in bone In addition to revised immunofluorescence protocols, we visualized bone vessels by endothelial-cell-specific expression of green fluorescent protein (GFP) in tamoxifen-treated Cdh5(PAC)-CreERT2, Rosa26-mT/mG double transgenic mic

    Gene expression: protein interaction system network modeling identifies transformation-associated molecules and pathways in ovarian cancer

    No full text
    Multiple, dissimilar genetic defects in cancers of the same origin contribute to heterogeneity in tumor phenotypes and therapeutic responses of patients, yet the associated molecular mechanisms remain elusive. Here, we show at the systems level that serous ovarian carcinoma is marked by the activation of interconnected modules associated with a specific gene set that was derived from three independent tumor-specific gene expression data sets. Network prediction algorithms combined with pre established protein interaction networks and known functionalities affirmed the importance of genes associated with ovarian cancer as predictive biomarkers, besides "discovering" novel ones purely on the basis of interconnectivity, whose precise involvement remains to be investigated. Copy number alterations and aberrant epigenetic regulation were identified and validated as significant influences on gene expression. More importantly, three functional modules centering on c-Myc activation, altered retinoblastoma signaling, and p53/cell cycle/DNA damage repair pathways have been identified for their involvement in transformation-associated events. Further studies will assign significance to and aid the design of a panel of specific markers predictive of individual- and tumor-specific pathways. In the parlance of this emerging field, such networks of gene-hub interactions may define personalized therapeutic decisions

    Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML

    Get PDF
    Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions. Endosteal AML cells produce pro-inflammatory and anti-angiogenic cytokines and gradually degrade endosteal endothelium, stromal cells, and osteoblastic cells, whereas central marrow remains vascularized and splenic vascular niches expand. Remodeled endosteal regions have reduced capacity to support non-leukemic HSCs, correlating with loss of normal hematopoiesis. Preserving endosteal endothelium with the small molecule deferoxamine or a genetic approach rescues HSCs loss, promotes chemotherapeutic efficacy, and enhances survival. These findings suggest that preventing degradation of the endosteal vasculature may improve current paradigms for treating AML
    corecore