3 research outputs found

    Association of rs1344706 in the ZNF804A gene with schizophrenia in a case/control sample from Indonesia

    No full text
    Background: Association of rs1344706 in the ZNF804A gene (2q32.1) with schizophrenia was first reported in a genome wide scan conducted in a sample of 479 cases and replicated in 6666 cases. Subsequently, evidence by replication was obtained in several samples with European- and Asian ancestral background. Methods: We report ascertainment, clinical characterization, quality control, and determination of ancestral background of a case control sample from Indonesia, comprising 1067 cases and 1111 ancestry matched controls. Genotyping was performed using a fluorescence-based allelic discrimination assay (TaqMan SNP genotyping assay) and a newly designed PCR-RFLP assay for confirmation of rs1344706 genotypes. Results: We confirmed association of the T-allele of rs1344706 with schizophrenia in a newly ascertained sample from Indonesia with Southeast Asian ancestral background (P = 0.019, OR = 1.155, 95%, CI 1.025-1.301). In addition, we studied several SNPs in the vicinity of rs1344706, for which nominally significant results had been reported. None of the association P values of the additional SNPs exceeded that of rs1344706. Conclusion: We provide additional evidence for association of the ZNF804A gene with schizophrenia. We conclude that rs1344706 or a yet unknown polymorphism in linkage disequilibrium is also involved in conferring susceptibility to schizophrenia in samples with different (Asian) ancestral backgrounds

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.11Nsciescopu
    corecore