19 research outputs found

    Synthesis and biological evaluation of arylated novobiocin analogs as Hsp90 inhibitors

    Get PDF
    Novobiocin analogs lacking labile glycosidic ether have been designed, synthesized and evaluated for Hsp90 inhibitory activity. Replacement of the synthetically complex noviose sugar with simple aromatic side chains produced analogs that maintain moderate cytotoxic activity against MCF7 and SkBR3 breast cancer cell-lines. Rationale for the preparation of des-noviose novobiocin analogs in addition to their synthesis and biological evaluation are presented herein

    Synthesis of Cruentaren A

    Get PDF
    Cruentaren A, an antifungal benzolactone produced by the myxobacterium Byssovorax cruenta, is highly cytotoxic against various human cancer cell lines and a highly selective inhibitor of mitochondrial F-ATPase. A convergent and efficient synthesis of cruentaren A is reported, based upon a diastereoselective alkylation, a series of stereoselective aldol reactions utilizing Myers’ pseudoephedrine propionamide, an acyl bromide–mediated esterification and a ring-closing metathesis (RCM) as the key steps. The RCM reaction was applied for the first time towards the total synthesis of cruentaren A, which led to a convergent and efficient synthesis of the natural product

    Synthesis and Evaluation of Novologues as C-Terminal Hsp90 Inhibitors with Cytoprotective Activity against Sensory Neuron Glucotoxicity

    Get PDF
    Compound 2 (KU-32) is a first-generation novologue (a novobiocin-based, C-terminal, heat shock protein 90 (Hsp90) inhibitor), that decreases glucose-induced death of primary sensory neurons and reverses numerous clinical indices of diabetic peripheral neuropathy in mice. The current study sought to exploit the C-terminal binding site of Hsp90 to determine whether the optimization of hydrogen bonding and hydrophobic interactions of second generation novologues could enhance neuroprotective activity. Using a series of substituted phenylboronic acids to replace the coumarin lactone of 2, we identified electronegative atoms placed at the meta-position of the B-ring exhibit improved cytoprotective activity, which is believed to result from favorable interactions with Lys539 in the Hsp90 C-terminal binding pocket. Consistent with these results, a meta-3-fluorophenyl substituted novologue (13b) exhibited a 14-fold lower ED50 compared to 2 for protection against glucose-induced toxicity of primary sensory neurons

    Targeting the Heat Shock Protein 90 Dimer with Dimeric Inhibitors

    Get PDF
    The design, synthesis and biological evaluation of conformationally constrained coumermycin A1 analogues are reported. Compounds were evaluated against both breast cancer (SKBr3 and MCF7) and prostate cancer (PC3mm2, A549 and HT29) cell lines. Non-noviosylated coumermycin A1 analogues that manifest potent anti-proliferative activity resulting from Hsp90 inhibition are provided, wherein replacement of the stereochemically complex noviose sugar with readily available piperidine rings resulted in ~100 fold increase in anti-proliferative activities as compared to coumermycin A1, producing small molecule Hsp90 inhibitors that exhibit nanomolar activities

    Synthesis and Biological Evaluation of Coumarin Replacements of Novobiocin as Hsp90 Inhibitors

    Get PDF
    Since Hsp90 modulates all six hallmarks of cancer simultaneously, it has become an attractive target for the development of cancer chemotherapeutics. In an effort to develop more efficacious compounds for Hsp90 inhibition, novobiocin analogues were prepared by replacing the central coumarin core with naphthalene, quinolinone, and quinoline surrogates. These modifications allowed for modification of the 2-position, which was previously unexplored. Biological evaluation of these compounds suggests a hydrophobic pocket about the 2-position of novobiocin. Anti-proliferative activities of these analogues against multiple cancer cell lines identified 2-alkoxyquinoline derivatives to exhibit improved activity

    Engineering an Antibiotic to Fight Cancer: Optimization of the Novobiocin Scaffold to Produce Anti-Proliferative Agents

    Get PDF
    Development of the DNA gyrase inhibitor, novobiocin, into a selective Hsp90 inhibitor was accomplished through structural modifications to the amide side chain, coumarin ring, and sugar moiety. These species exhibit ~700-fold improved anti-proliferative activity versus the natural product as evaluated by cellular efficacies against breast, colon, prostate, lung, and other cancer cell lines. Utilization of structure–activity relationships established for three novobiocin synthons produced optimized scaffolds, which manifest mid-nanomolar activity against a panel of cancer cell lines and serve as lead compounds that manifest their activities through Hsp90 inhibition

    Cruentaren A Binds F<sub>1</sub>F<sub>0</sub> ATP Synthase To Modulate the Hsp90 Protein Folding Machinery

    No full text
    The molecular chaperone Hsp90 requires the assistance of immunophilins, co-chaperones, and partner proteins for the conformational maturation of client proteins. Hsp90 inhibition represents a promising anticancer strategy due to the dependence of numerous oncogenic signaling pathways upon Hsp90 function. Historically, small molecules have been designed to inhibit ATPase activity at the Hsp90 N-terminus; however, these molecules also induce the pro-survival heat shock response (HSR). Therefore, inhibitors that exhibit alternative mechanisms of action that do not elicit the HSR are actively sought. Small molecules that disrupt Hsp90-co-chaperone interactions can destabilize the Hsp90 complex without induction of the HSR, which leads to inhibition of cell proliferation. In this article, selective inhibition of F<sub>1</sub>F<sub>0</sub> ATP synthase by cruentaren A was shown to disrupt the Hsp90-F<sub>1</sub>F<sub>0</sub> ATP synthase interaction and result in client protein degradation without induction of the HSR
    corecore