23 research outputs found

    Cellular control of protein levels: A systems biology perspective

    Get PDF
    Abstract How cells regulate protein levels is a central question of biology. Over the past decades, molecular biology research has provided profound insights into the mechanisms and the molecular machinery governing each step of the gene expression process, from transcription to protein degradation. Recent advances in transcriptomics and proteomics have complemented our understanding of these fundamental cellular processes with a quantitative, systems-level perspective. Multi-omic studies revealed significant quantitative, kinetic and functional differences between the genome, transcriptome and proteome. While protein levels often correlate with mRNA levels, quantitative investigations have demonstrated a substantial impact of translation and protein degradation on protein expression control. In addition, protein-level regulation appears to play a crucial role in buffering protein abundances against undesirable mRNA expression variation. These findings have practical implications for many fields, including gene function prediction and precision medicine

    Multiclassifier combinatorial proteomics of organelle shadows at the example of mitochondria in chromatin data

    Get PDF
    Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about 1/3 of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available

    Low cell number proteomic analysis using in-cell protease digests reveals a robust signature for cell cycle state classification

    Get PDF
    Comprehensive proteome analysis of rare cell phenotypes remains a significant challenge. We report a method for low cell number MS-based proteomics using protease digestion of mildly formaldehyde-fixed cells in cellulo, which we call the “in-cell digest.” We combined this with averaged MS1 precursor library matching to quantitatively characterize proteomes from low cell numbers of human lymphoblasts. About 4500 proteins were detected from 2000 cells, and 2500 proteins were quantitated from 200 lymphoblasts. The ease of sample processing and high sensitivity makes this method exceptionally suited for the proteomic analysis of rare cell states, including immune cell subsets and cell cycle subphases. To demonstrate the method, we characterized the proteome changes across 16 cell cycle states (CCSs) isolated from an asynchronous TK6 cells, avoiding synchronization. States included late mitotic cells present at extremely low frequency. We identified 119 pseudoperiodic proteins that vary across the cell cycle. Clustering of the pseudoperiodic proteins showed abundance patterns consistent with “waves” of protein degradation in late S, at the G2&M border, midmitosis, and at mitotic exit. These clusters were distinguished by significant differences in predicted nuclear localization and interaction with the anaphase-promoting complex/cyclosome. The dataset also identifies putative anaphase-promoting complex/cyclosome substrates in mitosis and the temporal order in which they are targeted for degradation. We demonstrate that a protein signature made of these 119 high-confidence cell cycle–regulated proteins can be used to perform unbiased classification of proteomes into CCSs. We applied this signature to 296 proteomes that encompass a range of quantitation methods, cell types, and experimental conditions. The analysis confidently assigns a CCS for 49 proteomes, including correct classification for proteomes from synchronized cells. We anticipate that this robust cell cycle protein signature will be crucial for classifying cell states in single-cell proteomes

    Mapping the invisible chromatin transactions of prophase chromosome remodeling

    Get PDF
    We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1(as) cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G(2). In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk

    Compositional dynamics:Defining the fuzzy cell

    Get PDF
    Proteomic studies find many proteins in unexpected cellular locations. Can functional components of organelles be distinguished from biochemical artefacts or misguided cellular sorting? The clue might reside in compositional changes that follow biological challenges and that can be decoded by machine learning

    Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology

    Get PDF
    There are multiple reasons why the next generation of biological and medical studies require increasing numbers of samples. Biological systems are dynamic, and the effect of a perturbation depends on the genetic background and environment. As a consequence, many conditions need to be considered to reach generalizable conclusions. Moreover, human population and clinical studies only reach sufficient statistical power if conducted at scale and with precise measurement methods. Finally, many proteins remain without sufficient functional annotations, because they have not been systematically studied under a broad range of conditions. In this review, we discuss the latest technical developments in mass spectrometry (MS)-based proteomics that facilitate large-scale studies by fast and efficient chromatography, fast scanning mass spectrometers, data-independent acquisition (DIA), and new software. We further highlight recent studies which demonstrate how high-throughput (HT) proteomics can be applied to capture biological diversity, to annotate gene functions or to generate predictive and prognostic models for human diseases. Keywords: biomarker discovery; data-independent acquisition; dynamic biological systems; gene annotation; precision medicine; proteomics

    Proteomics of a fuzzy organelle: interphase chromatin

    Get PDF
    Chromatin proteins mediate replication, regulate expression and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead we propose a new approach that provides a quantitative assessment of a protein’s probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of CDK regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology

    Pervasive coexpression of spatially proximal genes is buffered at the protein level

    Get PDF
    Genes are not randomly distributed in the genome. In humans, 10% of protein‐coding genes are transcribed from bidirectional promoters and many more are organised in larger clusters. Intriguingly, neighbouring genes are frequently coexpressed but rarely functionally related. Here we show that coexpression of bidirectional gene pairs, and closeby genes in general, is buffered at the protein level. Taking into account the 3D architecture of the genome, we find that co‐regulation of spatially close, functionally unrelated genes is pervasive at the transcriptome level, but does not extend to the proteome. We present evidence that non‐functional mRNA coexpression in human cells arises from stochastic chromatin fluctuations and direct regulatory interference between spatially close genes. Protein‐level buffering likely reflects a lack of coordination of post‐transcriptional regulation of functionally unrelated genes. Grouping human genes together along the genome sequence, or through long‐range chromosome folding, is associated with reduced expression noise. Our results support the hypothesis that the selection for noise reduction is a major driver of the evolution of genome organisation
    corecore