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In Brief
We introduce a streamlined
sample processing method for
bottom–up proteomics called the
“in-cell digest.” Fixed cells are
directly digested by trypsin to
peptides for LC–MS/MS.
Combined with AMPL, we
analyze the proteomes of 16
unperturbed cell cycle
populations using 2500 cells for
each. We identify a 119-protein
cell cycle signature. Using this
signature, we show unbiased
classification of proteomes in
proteomeHD into specific cell
cycle phases. Precise cell cycle
classification will be important in
dissecting single-cell proteome
heterogeneity.
Highlights
• The in-cell digest is a minimalistic sample processing method for proteomics.• Fixed cells are directly digested by trypsin into peptides for LC–MS/MS.• Quantitative proteomes for 16 cell cycle populations (2500 cells each).• A cell cycle signature classifies proteomes in proteomeHD into cell cycle phases.• Peptide analysis using the Orbitrap Elite is improved by using AMPL.
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RESEARCH
Low Cell Number Proteomic Analysis Using
In-Cell Protease Digests Reveals a Robust
Signature for Cell Cycle State Classification
Van Kelly1,2, Aymen al-Rawi1, David Lewis1, Georg Kustatscher2 , and Tony Ly1,3,*
Comprehensive proteome analysis of rare cell pheno-
types remains a significant challenge. We report a
method for low cell number MS-based proteomics
using protease digestion of mildly formaldehyde-fixed
cells in cellulo, which we call the “in-cell digest.” We
combined this with averaged MS1 precursor library
matching to quantitatively characterize proteomes
from low cell numbers of human lymphoblasts. About
4500 proteins were detected from 2000 cells, and 2500
proteins were quantitated from 200 lymphoblasts. The
ease of sample processing and high sensitivity makes
this method exceptionally suited for the proteomic
analysis of rare cell states, including immune cell
subsets and cell cycle subphases. To demonstrate the
method, we characterized the proteome changes
across 16 cell cycle states (CCSs) isolated from an
asynchronous TK6 cells, avoiding synchronization.
States included late mitotic cells present at extremely
low frequency. We identified 119 pseudoperiodic pro-
teins that vary across the cell cycle. Clustering of the
pseudoperiodic proteins showed abundance patterns
consistent with “waves” of protein degradation in late
S, at the G2&M border, midmitosis, and at mitotic exit.
These clusters were distinguished by significant dif-
ferences in predicted nuclear localization and interac-
tion with the anaphase-promoting complex/cyclosome.
The dataset also identifies putative anaphase-
promoting complex/cyclosome substrates in mitosis
and the temporal order in which they are targeted for
degradation. We demonstrate that a protein signature
made of these 119 high-confidence cell cycle–
regulated proteins can be used to perform unbiased
classification of proteomes into CCSs. We applied this
signature to 296 proteomes that encompass a range of
quantitation methods, cell types, and experimental
conditions. The analysis confidently assigns a CCS for
49 proteomes, including correct classification for pro-
teomes from synchronized cells. We anticipate that
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this robust cell cycle protein signature will be crucial
for classifying cell states in single-cell proteomes.

The proteome is a functional readout of cellular phenotype,
which includes dynamic and persistent features that reflect
cell state and cell type, respectively. Rare cell phenotypes play
key physiological roles. Quiescent stem cells, while often rare
relative to differentiated cell types in a tissue, are essential for
tissue homeostasis. Similarly, mitosis is a dynamic cell state
that is critical for the accurate propagation of genetic infor-
mation. Mitotic states are generally short lived and thus rare in
an asynchronous population. Proteomic analysis of these
critically important cell phenotypes is a major challenge
because typical proteomic workflows require >105 cells as
input.
We previously developed an approach called “PRIMMUS”

or “PRoteomics of Intracellular iMMUnostained cell Subsets”
to analyze abundant and rare cell cycle states (CCSs) (1).
Formaldehyde-fixed cells are fractionated into specific cell
states by staining cells for intracellular markers and separating
them using fluorescence-activated cell sorting (FACS). Cells
grown in asynchronous culture are immediately fixed, thereby
minimizing perturbation to physiological processes. This step
is critical, as small molecule-based synchronzation can lead to
effects on the proteome that are associated with stress re-
sponses arising from arrest rather than cell cycle regulation
per se (2). PRIMMUS enabled analysis of interphase and
mitotic subpopulations, but this approach was limited to
relatively abundant subpopulations for which >105 cells can
be collected by FACS within a reasonable time (3).
Low input proteome analysis requires specialized methods

for handling low cell number of cells (4, 5). Major improve-
ments have been made by adapting methods used for bulk
samples to low cell number samples (6–8). Recent advances
in small volume sample handling to nanoliter volumes have
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Cell State Proteomics and Classification
also enabled analysis of <10 cultured human cells, with overall
number of proteins detected scaling with cell number
(4, 9, 10). For example, ~3000 proteins were identified from ten
HeLa cells using “nanodroplet processing in one pot for trace
samples” (nanoPOTS) (11). In general, these methods have
specialized requirements, ranging from automated robotic
sample handling to custom microfabricated chips, which are
challenging to satisfy in most laboratories currently.
Cells fixed with formaldehyde introduce additional chal-

lenges for bottom–up MS-based proteomics. Formaldehyde
crosslinks proteins by forming methylene bridges primarily
between lysine residues. Peptide/protein crosslinks are
broken with heating to >65 ◦C. As an example, formalin-fixed
tissue processing protocols include heating for 1 h at 95 ◦C.
However, the fixative concentration and treatment duration
for formalin-fixed tissues is much higher (4% formaldehyde
for up to several hours). Studies on synthetic peptides
demonstrated that protein amino acid residues can be irre-
versibly modified by formaldehyde, producing chemical
modifications and corresponding mass shifts that are not
included in conventional database searches (12, 13). In
contrast, formaldehyde fixation for immune cell immuno-
staining and flow cytometry in clinical and academic research
settings is frequently much lower (0.1–3%) and carried out
under controlled conditions with limited treatment duration
(10–30 min).
Here, we report a methodological advance that elimi-

nates several steps previously required for processing fixed
cells for proteomics. We demonstrate that fixed cells in
suspension can be directly digested by trypsin without
heat-induced crosslink reversal for quantitative proteomics.
We call this streamlined approach the in-cell digest. The
in-cell digest provides major improvements in sensitivity
and convenience in performing proteomic analysis on low
numbers of fixed cells. To overcome the duty cycle limi-
tations of the Orbitrap Elite instrument, we developed an
acquisition method called averaged MS1 precursor library
matching (AMPL). We applied the in-cell digest and AMPL
with PRIMMUS to analyze the proteomic variation during
an unperturbed cell cycle in human lymphoblasts with
unparalleled temporal resolution to produce unbiased pro-
teomic definitions of CCS.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

Four biological replicates of 16 cell cycle populations were
collected by FACS, with two technical replicates of the 64 samples
being acquired by LC–MS (AMP acquisition strategy) resulting in 128
LC–MS analyses, providing eight pseudotimecourses for periodicity
analysis. Three libraries were generated from 12 high pH reversed-
phase (HPRP) fractions of unsorted cells, interphase cells, and
mitotic cells. Each library fraction was analyzed twice (or thrice for the
mitotic library) resulting in a library of 85 LC–MS analyses. Libraries
2 Mol Cell Proteomics (2022) 21(1) 100169
were used to increase proteome coverage through MS1 feature
matching.

Supporting experiments include the analysis of 12 HPRP fractions
of formaldehyde fixed, fixed and reversed, and nonfixed control
without replicates for a qualitative comparison of peptide modifica-
tions. About 12 cell titration samples were also collected in duplicate
up to 2000 cells by FACS, including a zero-cell control, to assess
LC–MS sensitivity of the improved processing and AMP acquisition
methods. The 24 cell titration samples were analyzed by AMP LC–MS
along with a 12 HPRP fraction library and an unfractionated library of
2000 sorted cells, which were analyzed by data-dependent acquisition
(DDA) LC–MS. To assess the impact of peptide filtering on MS1
feature matching false discovery rate (FDR), unmodified, dimethylated,
and isopropylated peptides were analyzed by AMPL and DDA, along
with a library of 12 HPRP fractions.

Cell Culture

TK6 human lymphoblasts (14) were obtained from the Earnshaw
laboratory (University of Edinburgh). Cells were cultured at 37 ◦C in the
presence of 5% CO2 as a suspension in RPMI1640 + GlutaMAX
(Thermo Fisher Scientific) supplemented with 10% v/v fetal bovine
serum (Thermo Fisher Scientific). Cell cultures were maintained at
densities no higher than 2 × 106 cells per ml. MCF10A cells (American
Type Culture Collection) were cultured in phenol red–free F12/Dul-
becco's modified Eagle's medium (Thermo Fisher Scientific) supple-
mented with 5% horse serum, 10 μg/ml insulin (Sigma), 100 ng/ml
cholera toxin (Sigma), 20 ng/ml epidermal growth factor (Sigma),
0.5 μg/ml hydrocortisone (Sigma), 100 units/ml penicillin, and 100 μg/
ml streptomycin (Thermo Fisher Scientific) at 37 ◦C in the presence of
5% CO2. Cells were maintained at less than 100% confluency and
discarded when passage number exceed 20 passages. U2OS cells
(American Type Culture Collection) were cultured in Dulbecco's
modified Eagle's medium high glucose + GlutaMAX (Thermo Scienti-
fic) supplemented with 10% v/v fetal bovine serum (Thermo Fisher
Scientific). Cells were checked for mycoplasma at the point of cryo-
storage using a luminescence-based assay (Lonza).

Cell Fixation and Immunostaining

Cells were washed with Dulbecco's PBS (DPBS; Lonza) and
resuspended in freshly prepared 1% formaldehyde solution (w/v) from
a 16% stock (w/v; Thermo Fisher Scientific) in DPBS, fixed for 10 min
at room temperature with gentle rotation, pelleted, washed with DPBS,
and permeabilized with cold 90% methanol. Cells were stored at −20
◦C prior to staining.

Cells stored in methanol were washed with DPBS and resuspended
in blocking buffer, which is composed of 5% bovine serum albumin
(BSA) in 0.1 M Tris-buffered saline, pH 7.4. Cells were blocked for
10 min at room temperature, pelleted, and resuspended in primary
antibody solution. The rat anti-H3S28ph HTA28 (abcam; ab10543),
mouse anticyclin A2 (Cell Signaling Technologies; 4656S), and rabbit
anticyclin B1 (12231S) were used for staining as 1:200 dilutions in
blocking buffer. Cells were stained with primary antibody overnight at
4 ◦C. Stained cells were then washed twice with wash buffer (DPBS +
0.5% BSA) and stained with dye-conjugated secondary antibodies.
The donkey antirat IgG H&L AlexaFluor 568 preadsorbed (abcam;
ab175475), donkey antimouse IgG (H + L) highly cross adsorbed
secondary antibody, Alexa Fluor 488 (Thermo; A21202), and goat anti-
rabbit IgG H&L (Alexa Fluor 647) preadsorbed (abcam; ab150083)
were used as 1:200 dilutions in blocking buffer. Cells were stained for
1 h at room temperature, washed twice with DPBS, pelleted, and
stained in 4′,6-diamidino-2-phenylindole solution (Sigma; 20 μg/ml in
DPBS + 0.1% BSA) for at least 1 h prior to FACS.
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FACS and Gating Strategy

Cells were collected using a BD FACSAria Fusion Cell Sorter
equipped with 355 nm UV, 405 nm violet, 488 nm blue, 561 nm YG
and 640 nm red lasers, and controlled by BD FACS Diva V8.0.1
software. Cells were first gated into “narrow” (P1–P8) and “wide”
(P9–P16) populations based on 4′,6-diamidino-2-phenylindole fluo-
rescence signal width. The narrow population contains single cells
either in interphase or in mitosis up to late anaphase. These single
cells were then separated based on cyclin B into eight different
stages of interphase. Population P1 has low to no cyclin B protein
and 2 N DNA content, consistent with low to no E2F activity and a
G0/early G1 cell state. Cyclin B rises monotonically from P2 to P6
and then rises more steeply from P6 to P8. Like cyclin B, cyclin A
also increases during interphase, but at a faster rate from P1 to P6 as
compared with P6 to P8. P9 to P13 are positive for histone H3
phosphorylation at Ser28 (pH3+). Highest levels of pH3+ are present
in prometaphase and metaphase. Rising and declining H3 phos-
phorylation in early and late mitosis, respectively, result in low to
medium levels of pH3+. Cyclin A and cyclin B levels are used to
further discriminate mitotic subphases, as they are degraded during
prometaphase and the metaphase-to-anaphase transition,
respectively.

Finally, late mitotic subphases are enriched in the wide population,
but so too are doublets. We reasoned that most doublets will have
cyclin B signal, as single cells with the exception of P1 are cyclin B
positive. Thus, we can further enrich late mitotic stages by selecting
wide, 4N, cyclin B negative cells (P14–P16). P14 to P16 are then
discriminated further by pH3+ levels, which decrease during mitotic
exit. We note that P16 may contain doublets of G0/early G1 cells (P1),
but P14 and P15 should not as P14 and P15 are pH3+, and G0/early
G1 cells are negative for pH3.

About 5000 cells for each gated population were collected us-
ing four-way purity using either an 85 or 100 μm nozzle, into
1.5 ml Eppendorf Protein Lo-Bind tubes. Four biological replicates
were collected. An interphase library sample was collected by
combining 300,000 cells of G0/G1, S, and G2 populations. A
mitotic library sample was composed of 800,000 mitotic cells
gated by high DNA content and high histone H3 Ser28 phos-
phorylation. Samples were centrifuged, and supernatant was
removed before storing at −20 ◦C.

In-Cell Digest

Cell-sorted library samples, and unstained unsorted TK6 cells, were
resuspended in DPBS at 2 to 5 million cells per ml and incubated with
1 μl (25–29 U) benzonase (Millipore) at 37 ◦C for a minimum of 1 h.
Trypsin was added to approximately 1:25 w/w, and in-cell digested at
37 ◦C for ~16 h. Digests were acidified with TFA and desalted over
Sep-Pak C18 cartridges (Waters) and dried.

Individual populations of 5000 cells were diluted with 40 μl PBS
and incubated with 0.25 μl (6–7 U) benzonase at 37 ◦C for a minimum
of 1 h, then digested with 50 ng trypsin (~1:10 w/w) at 37 ◦C for
~16 h. Samples were acidified with TFA and desalted over self-made
C18 columns with three Empore C18 disks and eluted directly into
Axygen 96-well PCR Microplates (Thermo Fisher Scientific) and
dried.

HPRP Fractionation

Approximately 100 μg interphase, mitotic, and unsorted TK6 cell
digests were fractionated by HPRP chromatography using an Ulti-
mate 3000 HPLC (Thermo Fisher Scientific) and a 1 × 100 mm 1.7 μm
Acquity UPLC BEH C18 column (Waters). Peptides were separated
using a constant 10 mM ammonium formate (pH 10) and a gradient
of water and 100% acetonitrile. Peptides were loaded at 1%
acetonitrile followed by separation by a 48 min multistep gradient of
acetonitrile from 3% to 6%, 25%, 45%, and 80% acetonitrile
at 4, 34, 44, and 45 min, respectively, followed by an 80% wash and
re-equilibration. Fractions were collected at 30 s intervals resulting in
96 fractions, which were concatenated into 12, and 1 μg aliquots
dried.

LC–MS/MS

Peptide samples were resuspended in 0.1% TFA. Approximately
0.5 μg of library fractions were injected for DDA LC–MS analysis. A
volume equal to half the cell population (equivalent to ~2500 cells)
was injected and analyzed twice by AMPL to produce two technical
replicates for each of the four biological replicates. An Ultimate 3000
RSLCnano HPLC (Dionex, Thermo Fisher Scientific) was coupled via
electrospray ionization to an Orbitrap Elite Hybrid Ion Trap-Orbitrap
(Thermo Fisher Scientific). Peptides were loaded directly onto a
75 μm × 50 cm PepMap-C18 EASY-Spray LC Column (Thermo
Fisher Scientific) and eluted at 250 nl/min using 0.1% formic acid
(solvent A) and 80% acetonitrile/0.1% formic acid (solvent B).
Samples were eluted over 90 min stepped linear gradient from 1% to
30% B over 72 min, then to 45% B over 18 min. AMPL analyses
included up to five MS1 microscans of 1E6 ions in the Orbitrap at a
resolution of 120 K and with a 250 ms maximum injection time. MS1
scans were acquired over 350 to 1700 m/z, and a “lock mass” of
445.120025 m/z was used. This was followed by five data-
dependent MS2 collision-induced dissociation events (5E3 target
ion accumulation) in the ion trap at rapid resolution with a 2 Da
isolation width, a normalized collision energy of 35, 50 ms maximum
fill time, a requirement of a 10 K precursor intensity, and a charge of
2+ or more. Precursors within 5 ppm were dynamically excluded for
40 s. DDA analyses were as for AMPL but with a single MS1
microscan with a 75 ms maximum injection time, followed by 20 CID
events in the ion trap.

Libraries were acquired as for DDA analyses or acquired with ten
data-dependent MS2 higher energy collision dissociation events at 30
normalized collision energy of 5E4 ions in the Orbitrap at 15 K reso-
lution and a maximum fill time of 100 ms, with a precursor intensity
required to be at least 50 K. For the sample preparation comparisons,
a 240 min gradient was used (1%–30% B for 210 min, then to 42% B
over 30 min). MS data were acquired as for DDA analysis described
previously with the exception that MS1 spectra were acquired at 60 K
resolution, and MS2 events were acquired only on 2+ and 3+
precursors.

MS/MS Data Analysis

Data were processed using MaxQuant, version 1.6.2.6 (15).
LC–MS/MS data were searched against the Human Reference
Proteome from UniProt including splice isoforms (accessed
October 23, 2017), which contains 93,613 entries, allowing for two
tryptic missed cleavages, allowing for variable methionine oxida-
tion and protein N-terminal acetylation. Carbamidomethyl cysteine
modification was allowed only for samples that were alkylated by
iodoacetamide. The parameter “Individual peptide mass tolerance”
was selected for variable precursor mass tolerances, with 0.5 Da
or 20 ppm mass tolerances set for ion trap or orbitrap fragment
ions, respectively. A target-decoy threshold of 1% was set for
both peptide-spectrum match and protein FDR. Match-between-
runs (MBR) was enabled with identification transfer within
0.5 min and a retention time alignment within 20 min window.
Matching was permitted from the library parameter group and
“from and to” the unfractionated parameter group. The parameter
“Require MS/MS for label-free quantitation comparisons” was
deselected, and second peptide search was enabled. Both
modified and unmodified unique and razor peptides were used for
Mol Cell Proteomics (2022) 21(1) 100169 3



FIG. 1. A simplified workflow for proteomics of formaldehyde-fixed cells using in-cell digestion. A, proteomics workflow to assess
impact of formaldehyde-induced modifications on proteome analysis. B and C, the number of peptides (B) and proteins (C) identified. D, fixed
and permeabilized cells treated either with DPBS (left) or with trypsin (right) were imaged at the indicated times in minutes. The scale bar
represents 50 μm. E, schematic of the in-cell digest workflow. F–H, comparison of the identification (F) and quantitative reproducibility (G and H)
between in-solution and in-cell digests. DPBS, Dulbecco's PBS.

Cell State Proteomics and Classification
quantification. Protein groups with fewer than two peptides were
discarded for the subsequent analysis.

MBR FDR Filtering

A reference sample was generated by lyzing TK6 cells in DPBS
with 2% SDS and cOMPLETE protease inhibitors without EDTA
(Roche; 1× concentration) at 70 ◦C, homogenized with a probe
sonicator, and treated with benzonase. Protein was reduced with
20 mM Tris(2-carboxyethyl)phosphin for 2 h before alkylation with
20 mM iodoacetamide at ambient temperature in the dark for 1 h.
Protein was precipitated with four volumes of cold acetone at −20 ◦C
4 Mol Cell Proteomics (2022) 21(1) 100169
overnight and washed with 100% cold acetone and 90% cold
ethanol. Protein pellet was air dried before resuspending in DPBS
and digesting with 1:50 w/w trypsin for ~16 h. Peptides were acidi-
fied, desalted, aliquoted, and fractionated as previously described.
For isopropylation, 50 μg peptides were resuspended in 200 μl 90%
acetonitrile containing 0.1% formic acid before addition of 50 μl
acetone containing 36 μg/μl NaBH3CN. The reaction was conducted
at ambient temperature for ~16 h before quenching with ammonium
bicarbonate, drying off solvent, and desalting peptides over C18. For
dimethylation, 50 μg peptide was resuspended in 200 μl DPBS
before addition of 0.32% formaldehyde and 50 mM NaBH3CN. The
reaction was conducted at ambient temperature for ~16 h before



FIG. 2. Averaged MS1 precursor library matching (AMPL) increases peptide detection sensitivity. A, schematic outlining the AMPL
experimental design. B, both the AMPL and BoxCar acquisition methods prioritize MS time to enhance MS1 scan quality. Schematic comparing
duty cycles for data-dependent acquisition (DDA), AMPL, and BoxCar acquisition methods on the indicated MS instruments (Orbitrap Elite,
Orbitrap HF). The median peak width using our chromatographic setup with the Orbitrap Elite is ~38 s. C, a comparison between AMPL and
DDA + L, showing intensity distributions of peptide features identified by MS/MS (blue) and matching to identified library features (red).
D, schematic outlining experimental workflow for assessing match-between-runs false discovery rate. E, features matched in target and decoy
proteomes before and after additional filtering based on match retention time difference, match m/z difference, and match m/z error. F and G,
features (F) and unique peptides (G) detected in AMP(L) versus DDA. DDA + L is DDA with matching to a library. H, proteome coverage versus
cell number. The cell titration was performed in duplicate.
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quenching with ammonium bicarbonate and desalting peptides over
C18. About 200 ng of unmodified, dimethylated, and isopropylated
peptides were analyzed by AMPL and DDA, and unmodified frac-
tionated peptide samples were analyzed by DDA, as previously
described. LC–MS data were searched using MaxQuant, as previ-
ously described. Note that dimethylation and isopropylation modifi-
cations were not specified in the search parameters.

Cell Cycle Proteomic Data Analysis

All subsequent data analyses on the protein intensity table,
including the analysis of pseudoperiodicity, were performed using R
(version 3.5.0) within the RStudio integrated development environ-
ment. The R scripts are available as supplemental Data S1. The list of
validated anaphase-promoting complex/cyclosome (APC/C) sub-
strates was obtained from the APC/C degron repository (http://slim.
icr.ac.uk/apc/). Proteins that contain D box, KEN, and ABBA short
linear (sequence) motifs (SLiMs) in the human proteome were found
using SLiMsearch with default settings (disorder score cutoff: 0.30;
flank length: 5). In order to remove slight variations in total protein
amount in each sample, protein intensities were divided by total in-
tensities per sample and multiplied by 106 to obtain intensities in parts
per million. There are four biological replicates analyzed in technical
duplicate. As described previously, sample analysis was completely
randomized in the second technical repeat. Each technical repeat (i.e.,
set of four biological replicates) is considered as one “pseudotime-
course” with samples in each biological replicate arranged in order
from P1 to P16. Each of the two pseudotimecourse was then inde-
pendently subjected to a Fisher's test for periodicity, as implemented
in the ptest R library (version 1.0-8). Fisher's periodicity test p values
were corrected for multiple hypothesis testing using the q value
method as implemented in the qvalue R library (2.15.0). Those proteins
that showed q values <0.10 in both sets of biological replicates and
oscillation frequencies of either 0.0625 (1/16) or 0.125 (1/8) were
classified as pseudoperiodic.

For clustering, protein parts per million values were averaged
(mean) to produce a single pseudotimecourse for each protein.
These average abundance profiles were scaled using the base R
function scale and subjected to hierarchal clustering using the Ward
minimum variance algorithm. The appropriate range for cluster
Mol Cell Proteomics (2022) 21(1) 100169 5
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number was identified as 3 to 6 clusters using the “elbow method,”
which involves plotting within-cluster sum of squares versus number
of clusters. Bifurcating leaves of the subsequent dendrogram were
swapped in order to produce a heatmap that follows a logical and
sequential order of peak abundance, that is, cluster 1 with highest
abundance in P0 to P8 and cluster 5 with peak abundance in P3 to
P7, and others.

For principal component analysis (PCA) and CCS classification,
scaled pseudotimecourses were used. Cell cycle states were classified
using the k-NN model as implemented in the class R library (version
7.3-15) using k = 6, with k being the number of nearest neighbors for
classification. Three biological replicates were used as the training set,
and the remaining replicate was used as a test set. R scripts used for
this analysis can be found in supplemental Data S2–S6.

RESULTS

The “In-Cell Digest”: Direct Protease Digestion of Fixed
Cells

Based on previous work (1, 16), we hypothesized that
formaldehyde-induced modifications were of low stoichiom-
etry, and crosslink reversal may not be required for proteome
analysis. Consistent with this idea, deep proteome analysis
comparing human epithelial MCF10A cells fixed with 2%
formaldehyde for 10 min, fixed and treated with heating to
reverse formaldehyde crosslinks, or not fixed (Fig. 1A and
supplemental Fig. S1A) showed no significant differences in
protein and peptide coverage (Fig. 1, B and C). These pro-
teomes were analyzed to a depth of ~53,600 peptides and
~7700 proteins. To identify peptides chemically modified by
formaldehyde, we next used an error-tolerant MS search,
which identifies peptide mass shifts in an unbiased fashion
(supplemental Table S1) (17). The pattern and frequency of
detected mass shifts are remarkably similar between control
and fixed samples (supplemental Fig. S1B). From these ob-
servations, we concluded that under these controlled and mild
fixation conditions, the stoichiometry of crosslinking and
chemical modification by formaldehyde is sufficiently low such
that the nondetection of modified and crosslinked peptides is
not detrimental for characterization of proteomes to a depth of
at least 7700 proteins.
We next hypothesized that fixed cells may make suitable

substrates for direct protease digestion. Digestion of fixed cells
would significantly simplify the sample processing workflow by
eliminating several steps, including detergent-based lysis, ho-
mogenization, heat treatment, and detergent removal. We
therefore treated fixed and permeabilized cells suspended in
DPBS with either mock treatment (DPBS), or trypsin, and
monitored cell morphology by brightfield microscopy. As
shown in Figure 1D, prominent structural features visible in
control cells, such as the plasma membrane, nuclei, and
nucleoli, are degraded in a time-dependent manner by trypsin
(supplemental Video S1). For LC–MS/MS analysis, fixed cells
were also preincubatedwith benzonase to digest RNAandDNA
oligonucleotides, whichmay interfere with downstream sample
processing. The peptide-containing supernatant from the
6 Mol Cell Proteomics (2022) 21(1) 100169
digest was then subjected to C18 purification prior to analysis
byLC–MS/MS.As thedigestionoccurswithin the fixedcells,we
have called this approach an “in-cell digest” (Fig. 1E).
As shown in Figure 1F, the proteome coverages are similar

for fixed cells processed by the in-cell digest method (~4678
proteins, n = 3), fixed samples that were subjected to the
PRIMMUS protocol (~4446 proteins, n = 3), and extracts from
nonfixed cells processed by precipitation (see Experimental
Procedures section, ~4561 proteins, n = 3). We conclude
that the proteome coverage from the in-cell digest is similar,
or higher, than the other protocols tested.
We did not observe a broad bias in quantitation, as label-free

intensities measured in fixed cells prepared by the in-cell digest
and by decrosslinking followed by an in-solution digest showed
high correlation (Fig. 1G, ρ = 0.96). Similarly, a high correlation
was observed between fixed cells prepared by the in-cell digest
and nonfixed cells (Fig. 1H, ρ = 0.97). Few points lie off diagonal,
indicating that proteins showing a major difference in intensity
between methods are rare. We then tested if these off-diagonal
proteins were enriched in any UniProt keywords or Gene
Ontology annotations using DAVID. The only terms that were
significantly enriched inproteinsshowing lower intensitywith the
in-cell digest were associated with RNA binding (FDR < 0.05;
supplemental Fig. S1C). Notably, these RNA-binding proteins
are present in cells at high abundance. In contrast, proteins
showing higher intensity with the in-cell digest are enriched in
membrane proteins (FDR < 0.05; supplemental Fig. S1D).
Improved recoveryofmembraneproteinsusing the in-cell digest
is consistent with previous results demonstrating that heat
treatment can irreversibly precipitate membrane proteins.
We conclude that the measurements of protein abundance

from the in-cell digest are quantitative, reproducible, and
broadly comparable to conventional sample preparation
methods. We note that each sample preparation method will
have its own specific biases. In the case of the in-cell digest,
the increased abundance of membrane proteins may more
accurately reflect the abundance of these proteins in cells.

AMPL Improves Feature Detection

To increase the sensitivity and detection speed of the
Orbitrap Elite MS instrument, we utilized MS1-based identifi-
cation and quantitation using accurate mass and retention
time matching, as proposed originally by the Smith laboratory
(18). This approach has been recently demonstrated to be
highly sensitive in an implementation called BoxCar (19). The
BoxCar method increases the signal-to-noise (S/N) ratio of
trap-based MS by collecting ions using segmented and
spaced windows. Peptide identification relies on MS1 feature
matching to a reference library generated from a fractionated
reference sample using the MaxQuant function “Match-be-
tween-runs” (MBR). The library is analyzed separately using
DDA, and peptides are identified by MS2 and database
searches.
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As the BoxCar method cannot be directly implemented on
the Orbitrap Elite, we developed a different approach to in-
crease the dynamic range of MS1 feature detection. MS1
spectral averaging is frequently performed in direct infusion
MS but rarely employed in LC–MS bottom–up proteomics. We
surmised that averaging several MS1 scans would improve
S/N and would rapidly plateau as it is known that averaging
improves S/N by a factor of sqrt(n), where n is the number of
spectra averaged. Features would then be matched between
the single shot analyses to a fractionated reference library
(Fig. 2A). We call this method AMPL, or AMP if no library is
used. Like BoxCar, AMP(L) prioritizes MS1 scans over MS2
scans as compared with DDA (Fig. 2B) and includes top-5
DDA MS/MS scans to ensure identification of features for
accurate retention time alignment throughout the chromato-
graphic separation.
We therefore tested AMPL by analyzing 1 μg on-column

loads of MCF10A tryptic digests. A comparison of different
MS1 scans (n = 1, 3, 4, and 5) showed that the number of
features and peptides identified saturates at n = 4
(supplemental Fig. S2, A and B). AMPL (n = 4) detects
~278,205 features, representing a 20% increase compared
with a standard top 20 DDA acquisition using the same
gradient (188,928 features). We reasoned that the additional
peptides detected by AMPL originate from low-abundance
features detected by virtue of the S/N increase because of
averaging. Figure 2C compares the peptide intensity distri-
butions between DDA-L and AMPL. The distributions are
bimodal, with MS/MS-dependent identification biased toward
higher intensity features (cyan). Consistent with the idea that
AMPL improves S/N, AMPL detects a higher number of
matched features (pink) in the low abundance regime. Similar
to previous MS1-based matching approaches, AMPL shows
higher data completeness (4411 proteins with intensities
measured in all ten replicates) as compared with DDA-L (3493
proteins) and DDA (2865 proteins) (supplemental Fig. S2C).
MS1-based matching significantly increases the sensitivity,

coverage, and data completeness of MS-based proteomics.
However, the lack of MS2-based identification for these
matched sequences could potentially increase the FDR. We
estimated the matching FDR by using an empirical “target-
decoy” approach, where decoy proteomes created by
chemical modification (dimethylation and isopropylation) are
matched against an unmodified library (Fig. 2D). Whereas
matches to the target proteome will contain both true and
false positives, matches to the decoy proteomes should
contain exclusively false positives (with the rare exception of
peptides containing an N-terminal acetyl group, a C-terminal
arginine, which are not dimethylated/isopropylated). About
~32% of the features are assigned a peptide sequence when
the target and unmodified proteome is matched against an
unmodified library (supplemental Fig. S2D). By contrast, only
~2% of the features are matched in the decoy samples
(supplemental Fig. S2D). Using this approach, the estimated
match FDR is 7.4%. To reduce the FDR to <5%, we applied
additional thresholds for match time, match m/z, and match
m/z error (2.5 σ for match time, 3 σ for match m/z and match
m/z error, supplemental Fig. S2, E and F). Application of
these thresholds reduced the estimated FDR to 3.1-3.4%
(Fig. 2E) while retaining 96% of the matches in the target
dataset.
The improvements in detecting low abundance features

suggest that AMPL may be well suited to analysis of low
sample loads. AMP (i.e., no library) consistently detects more
features than DDA (Fig. 2F), which leads to significant im-
provements in peptide coverage (Fig. 2G). For example, at
10 ng loading, 21,483 unique peptides are quantitated by
AMPL versus 14,702 by DDA-L, representing a 46% increase
in coverage. AMPL provides 150 to 535% improvement rela-
tive to conventional DDA with no library and 24 to 46%
improvement relative to DDA-L for protein coverage at all
tested column loads with greatest gains observed at low
column load.
As shown in Figure 2G, AMPL detects a slightly higher

number of peptides in 10 ng on-column load as DDA with
1 μg load, demonstrating a >100× increase in sensitivity. A
10 ng on-column load is equivalent to the protein content of
~67 cells based on the protein per cell measured in bulk
assays. However, the effective number of cells required for
proteome analysis is frequently much higher due to losses
during sample preparation. We reasoned that these losses
are significantly reduced using the streamlined in-cell
digest.
We combined the in-cell digest with AMPL to analyze FACS

collected TK6 cells, a human lymphoblastoid cell line (LCL)
with a stable near-diploid karyotype. Notably, TK6 cells are
smaller than typical adherent human cell lines, such as HeLa
and MCF10A. Being cultured in suspension, TK6 cells are
amenable toward cell separation techniques, including FACS
and centrifugal elutriation, without requiring cell dissociation,
which can induce physiological perturbations.
Figure 2H shows the result of a cell titration analysis of

S-phase cells performed in duplicate, whereby two aliquots at
each indicated cell number (2000 cells to 0 cells) were
collected by FACS from the same starting cell population.
Approximately, 4500 proteins were quantitated with
2000 cells, with 4480 proteins reproducibly quantitated in two
technical repeats. At the lower end of the cell titration, 2933
proteins on average were quantitated from 200 cells. We note
that below this number of cells, we observe a higher variability
in proteome coverage, which will need to be addressed by
further optimization. Indeed, while approximately 30 proteins
were detected in single cells, with 17 reproducibly detected,
nearly all these proteins were also detected in the background
samples (“0 cells”).
We conclude that combining in-cell digest and AMPL en-

ables characterization of proteomes of 2000 cells to a protein
depth comparable to conventional single shot DDA analysis of
Mol Cell Proteomics (2022) 21(1) 100169 7



FIG. 3. High-resolution proteomic analysis of an unperturbed cell cycle. A, schematic describing the experimental design and workflow.
Details for protein abundance normalization and pseudoperiodicity analysis can be found in the Experimental Procedures section. B, heatmap of
the 119 identified pseudoperiodic proteins organized by cluster. Schematic above heatmap shows indicative cell cycle stages isolated by FACS
(full gating strategy is shown in supplemental Fig. S3). C, enriched UniProt keywords by cluster. D, proteins in clusters 1 and 2 containing a
putative nuclear localization signal (NLS). E, proteins in clusters 4 and 5 containing a putative nuclear export signal (NES). * indicate p < 0.01
(Fisher's exact test). FACS, fluorescence-activated cell sorting.
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1 μg on-column loads. The advanced PRIMMUS method
presented here significantly reduces the number of cells
required, that is, ~103 versus ~105 with low estimated match
FDR (<3.5%).

High Temporal Resolution Analysis of an Unperturbed Cell
Cycle Using PRIMMUS

The process of normal cell division requires linear progres-
sion through several cellular states (i.e., S and M phases) in
which DNA replication and mitosis must occur in sequential
order. These states can be further resolved. DNA replication,
for example, occurs in a temporally and spatially patterned
manner, with euchromatic genomic regions replicating first
before heterochromatin-dense regions. Similarly, M phase can
be resolved into prophase, prometaphase, metaphase,
anaphase I, anaphase II, and telophase based on cytological
features. Some of these phases, including telophase, are
exceptionally rare in asynchronous cells and are not amenable
for collection by FACS in numbers required for typical
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proteomic analysis. We therefore developed an advanced
PRIMMUS workflow incorporating the in-cell digest to target
these rare cell states and carry out a high temporal resolution
analysis of proteome variation across 16 cell cycle sub-
populations, including eight interphase and eight mitotic
states (Fig. 3A). This fractionation-based approach to sepa-
rating cell cycle phases relies on continuous cell trajectories,
such as cell cycle progression in asynchronous populations
that are unperturbed by drug-based synchronization.
TK6 cells were immunostained for DNA content, cyclin B,

cyclin A, and histone H3 phosphorylation (Ser28), which are all
markers of cell cycle progression. Cells were then separated
into 16 cell cycle populations (P1–P16) (see supplemental
Fig. S3 for the full gating strategy). Biochemical differences
are used as a surrogate for time and cell cycle progression.
Based on the past literature (20, 21) and our previous data (1),
we have correlated these biochemical changes with specific
CCSs (as illustrated in Fig. 3B, top). For example, cyclin A and
cyclin B levels are used to discriminate mitotic subphases, as



FIG. 4. Characterization of potential APC/C substrates. A, mean intensity profile for five clusters is shown in Figure 3B. B, schematic
illustrating regulation of APC/C substrate choice switch during mitosis by coactivators Cdc20 and Cdh1. C, enrichment analysis of SLiMs that
control interaction with the APC/C. D, proteins with at least one APC/C SLiM grouped by cluster. The yellow fill indicates proteins that contain
two or more SLiMs. APC/C, anaphase-promoting complex/cyclosome; SLiM, short linear (sequence) motif.
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they are degraded during prometaphase and the metaphase-
to-anaphase transition, respectively. Proteome characteriza-
tion of these cells, previously challenging because of lack of
sensitivity, is now possible with the in-cell digest.
The rarest target population are cells in late anaphase of

mitosis, which are present in 0.01% of an asynchronous TK6
culture. Four separate cultures of TK6 cells were indepen-
dently FACS separated into 16 populations. For each popu-
lation, 5000 cells were collected and processed using the in-
cell digest. Collection of 5000 cells provided sufficient mate-
rial for duplicate injections for LC–MS/MS analysis by AMPL
with DDA libraries generated from interphase, mitotic, and
asynchronous cells. The data were then processed by Max-
Quant with MBR (supplemental Table S2) and filtered by
match parameters as discussed previously to generate a
dataset with 7553 quantitated proteins (supplemental
Table S3).
Next, to identify cell cycle–regulated proteins, we treated

each set of 16 populations as an ordered series of biochemical
states. These states were projected onto a temporal axis (i.e.,
cell cycle progression). A single replicate series of ordered cell
states constitutes a “pseudotimecourse” (Fig. 3A, bottom).
We then applied the Fisher's periodicity test to identify
“pseudoperiodic proteins” (PsPs), that is, protein abundance
patterns that showed periodic behavior across the four
pseudoperiodic timecourses. In order to increase robustness,
the periodicity test was separately performed on each tech-
nical repeat, and only those proteins showing periodicity in
both were designated as PsPs. Figure 3A (bottom) shows the
abundance profiles for heat shock protein HSP90AA1 and
ATPase AAA domain–containing protein ATAD2 as an
example non-PsP and PsP, respectively. ATAD2 shows highly
reproducible abundance variation in all eight pseudotime-
courses, with peak abundance in S-phase populations (P5–
P6), consistent with previous reports (22). In total, 119 PsPs
were identified using these criteria (Fig. 3A, bottom,
supplemental Table S4).
Hierarchal clustering of the 119 PsPs identified five major

classes of protein abundance patterns (Fig. 3B). Each cluster
shows peak abundance at different times during cell cycle
progression. The Gene Ontology terms enriched for each
cluster reflects key processes and/or compartments associ-
ated with the respective phase of the cell cycle (Fig. 3C). We
also assessed enrichment in SLiMs. SLiMs mediate protein–
protein interactions that lead to changes in post-translational
modification, stability, and/or subcellular localization of a
protein. Using the eukaryotic linear motif database (23), we
identified SLiMs that are enriched in each cluster (p < 0.01,
Fisher's exact test, supplemental Table S5).
Cluster 1 proteins show high abundance in interphase,

which decreases in early mitosis (P8–P10) and recovers
slightly in late mitotic populations (P15–P16). This cluster is
highly enriched in proteins with a monopartite nuclear import
signal sequence (Fig. 3D), and in contrast to other clusters, do
not show any enrichment for the Crm1-mediated nuclear
export signal (NES) sequence (Fig. 3E). Most proteins in this
Mol Cell Proteomics (2022) 21(1) 100169 9
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cluster are either RNA or DNA binding (26/33). For example,
several mRNA splicing factors are in this group, including
serine/arginine-rich proteins (SRRM2, SRSF2, SRSF3, SRSF5,
SRSF6, and SRSF10/TRAB). These proteins reproducibly
decrease in abundance in mitosis, but with a small fold
change (less than twofold) than key cell cycle regulators, for
example, cyclin B1 (greater than fourfold). The stability of the
SR proteins is regulated by nucleocytoplasmic shuttling. For
example, SRSF1 is stable in the nucleus but has a short half-
life in the cytoplasm (24). Proteasome-dependent degradation
of SR proteins is dependent on the RS domain, which is
shared among SR proteins (25). Cluster 1 is also enriched in
poly(A)-binding proteins in the nucleus that are involved in pre-
mRNA and ribosomal RNA processing, for example, XRN2,
NOLC1. The remaining proteins with no known or anticipated
oligonucleotide-binding properties are enriched in
cytoskeleton-binding factors, for example, the actin-binding
protein MARCKS, CCDC6, CEP89, and DBNL.
Cluster 2 proteins peak in late G1/S. Nearly all proteins in

this cluster are directly involved in DNA replication, estab-
lishment of nascent chromatin, or the G1/S transition (Fig. 3C).
In this cluster are three members of the MCM helicase (MCM2,
MCM5, and MCM6), the replication-dependent histone
chaperone (CHAF1B), and the histone mRNA stem–loop
binding factor SLBP, which is essential for the synthesis of
histones for incorporation into newly synthesized DNA in S
phase. This cluster also includes the DNA damage checkpoint
kinase ATM, which is important in resolving endogenous
replication stress (26).
Cluster 3 shows peak abundance in late S, G2 (P6–P8), and

decreased abundance in early-mid mitosis (P9–P11). Three
proteins show greater than fivefold decrease in abundance by
mid-mitosis with low or undetectable levels in late mitosis:
GMNN, RRM2, and PAF/KIAA0101. All three are targeted for
degradation in late mitosis and G1 by the APC/C-Cdh1. The
remaining proteins in the cluster show an increase in S/G2
phase and a decrease in prophase/prometaphase (P9–P12),
followed by a slight recovery in abundance in late mitosis.
These include sororin/CDCA5, which functions in sister
chromatid cohesion establishment, and MIS18BP1, which
facilitates loading of the centromere-specific histone in late
mitosis and G1. This cluster is enriched in chromatin-binding
factors, including TRIM28/KAP1, EXO1, sororin, PAF, and
MIS18BP1.
Clusters 4 and 5 show peak abundance during mitosis

and contain the largest proportion of proteins with either
known direct roles in mitotic progression or targeted for
degradation in mitosis (9/12 for cluster 4 and 38/46 for
cluster 5). The feature that distinguishes clusters 4 and 5 is
the mitotic abundance pattern. Cluster 4 proteins show
decreased abundance in earlier mitotic populations, partic-
ularly in P11 to P12, coincident with the onset of cyclin A2
and cyclin B1 degradation. The three mitotic cyclins
detected (A2, B1, and B2), the spindle assembly checkpoint
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kinases BUB1 and BUB1B (BubR1), the kinesin-8 family
member KIF18B, securin (PTTG1), and shugoshin (SGO2)
are in this cluster. Functionally, this cluster is characterized
by proteins that 1) protect sister chromatid cohesion
(securin and shugoshin) and, 2) form the spindle assembly
checkpoint (Bub kinases), which prevents anaphase while
proper microtubule attachment and biorientation of chro-
mosomes takes place.
By contrast, cluster 5 proteins show a significant increase in

abundance at the end of interphase (P7–P8) with peak abun-
dance throughout mitosis (P9–P15) and a significant decrease
only in the last population (P16), that is, cells undergoing
mitotic exit. Example proteins include the catalytic E2 subunits
of the APC/C (UBE2C and UBE2S), the chromosome pas-
senger complex (AURKB, INCENP, BIRC5–survivin, CDCA8–
borealin), polo kinase (PLK1), and the spindle-associated
protein FAM83D. Both aurora kinases (aurora A and aurora
B) are known to relocalize to the central spindle after
anaphase onset. Aurora B activity is crucial for cytokinesis, the
final step in cell division.
Clusters 4 and 5 are strongly enriched in the Crm1-

mediated NES (Fig. 3E). About 8/12 proteins in cluster 4
match the NES consensus. Notably, cluster 4 includes cyclins
B1 and B2, and constitutive export of cyclin B–cyclin-
dependent kinase from the nucleus is important in preventing
premature mitotic entry. Exclusion from the nucleus of other
proteins within these two clusters (Fig. 3E) may also be
important in preventing premature activation of processes that
are normally restricted to mitosis.
We identified PsPs that have no reported function in cell

cycle control. These novel cell cycle–regulated proteins may,
like many of the other proteins identified in this manner, have
significant roles in cell cycle progression. These candidates
include EXO1, the DNA helicase PIF1, the guanine-exchange
factor NET1, and the serine protease FAM111B.

Analysis of Mitotic Protein Abundance Dynamics in
Unperturbed Cells

A major difference between the clusters is the timing of
protein abundance decrease (Fig. 4A). A critical regulator of
protein abundance during the cell cycle is the APC/C. The
APC/C is an E3 ubiquitin ligase and is active during the mitotic
and G0/G1 phases of the cell cycle (27, 28). Its substrates
include key regulators of the cell cycle, including cyclin A2 and
cyclin B1. Ubiquitination of APC/C substrates is tightly
temporally controlled, with APC/C substrate specificity
changing during the cell cycle (Fig. 4B). This is mediated
through changes in the APC/C coactivators and substrate
recognition factors, Cdc20 and Cdh1. While APC/C-Cdc20 is
active in early mitosis, the substrate receptor changes to Cdh1
in late mitosis, thereby conferring a temporal order to sub-
strate degradation. Cdc20 is itself a substrate of the APC/C-
Cdh1, allowing for switch-like handover in substrate receptor
control.



FIG. 5. The 119 PsPs form a signature that classifies cell cycle states. A, schematic illustrating the approach to compare the signature
across datasets. B and C, PCA of the 16 cell cycle populations in this study using the 119 PsPs as features using either individual replicates (B)
or mean abundances (C). D and E, PCA as in (C) with samples from elutriated (D) or from cell cycle arrest (E) label-free datasets using NB4 cells.
AS, asynchronous; HU, hydroxyurea; PCA, principal component analysis; RO, RO-3306; SS, serum starvation.
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About 25 PsPs (out of 119) are experimentally validated
APC/C substrates (29), and of these, 24 are found in clusters
3, 4, and 5. Substrate recognition by APC/C-Cdc20 and APC/
C-Cdh1 is mediated by the interaction between WD40 do-
mains on the APC/C-(Cdc20/Cdh1) and SLiMs found on
substrates. The KEN and D-box (RxxL) degrons are well-
documented SLiMs that bind both APC/C-Cdc20 and APC/
C-Cdh1, with APC/C-Cdh1 having a preference for the KEN
degron. A third SLiM called the ABBA motif was shown to be
important in substrate recognition by APC/C-Cdc20 (30).
Figure 4C shows the enrichment profile of these SLiMs

across the six clusters. The KEN motif is comparably enriched
in four of the five clusters (Fig. 4C, top), with highest enrich-
ments for the mitotic phase–peaking clusters (clusters 4 and
5). The frequencies range from 25% of the proteins in a cluster
having the KEN motif (cluster 2) to 43% (cluster 5), repre-
senting a threefold to fivefold enrichment over the background
frequency (8%). All four clusters show low to nondetectable
abundance in P16, P1, and P2, that is, mitotic exit and
G0/early G1 when APC/C-Cdh1 is active. In total, 35 cell
cycle–regulated proteins contain a KEN SLiM, approximately
50% (18 proteins) that have been experimentally characterized
as APC/C substrates. The remaining uncharacterized
17 proteins are excellent candidates to be APC/C-Cdh1
substrates. Consistent with this prediction, cluster 1, which
is the only cluster showing no enrichment for the KEN motif,
contains proteins that have on average, higher abundance in
G0/early G1.
Six of 12 proteins that peak in mid-mitosis (cluster 4)

contain the RxxL D-box sequence. The 50% frequency is
approximately eightfold higher than the background frequency
(6%). By contrast, the fold enrichment is considerably lower in
the other clusters (Fig. 4C). Similarly, five of 12 proteins
contain the ABBA motif (42%; Fig. 4C), representing an
approximately ninefold enrichment over the background fre-
quency (5%). D-box and ABBA motif–containing proteins in
this cluster are mostly mutually exclusive (Fig. 4D). Of the D-
box and ABBA motif–containing proteins, two have not been
previously experimentally characterized as APC/C substrates:
MVP and CLEC16A.
Cluster 4 is highly enriched in proteins containing more than

one SLiM (KEN/D-box/ABBA; Fig. 4C, bottom), and two pro-
teins in this cluster contain all three SLiMs: BubR1 (BUB1B)
and shugoshin-2 (SGOL2). KIF20B is the only other PP that
has all three SLiMs and is in cluster 5. BubR1 has been
demonstrated to interact with APC/C through these three
SLiMs and acts as a pseudosubstrate to inhibit APC/C ac-
tivities in spatiotemporally controlled manner (31). It would be
Mol Cell Proteomics (2022) 21(1) 100169 11



FIG. 6. Unbiased assignment of CCSs across hundreds of proteomes in ProteomeHD. A, schematic of how the 16 cell cycle populations
were aggregated into eight CCSs. B, assignment of chromatin proteomes from nascent chromatin capture (NCC) and chromatin enrichment
proteomics (ChEP) SILAC experiments. NCC samples were enriched in S phase. G1S, G2, and M samples were treated with thymidine, RO-
3306, and nocodazole, respectively. C, Spearman rank correlation coefficient for the eight CCSs for M/G1S. This sample has the highest
correlation with CCS6 (blue fill). D, correlation scatter plot between CCS6 and M/G1S. E, heatmap showing Spearman correlation coefficients for
47 experiments (out of 294) that show an enriched CCS and 15 randomly selected experiments that have no CCS enrichment. The columns
shown are CCS1 to CCS8. CCS, cell cycle state; SILAC, stable isotope labeling by amino acids in cell culture.
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interesting to test the role of these SLiMs in the other two
proteins (SGOL2 and KIF20B). For example, SGOL2 has
functions in protecting sister chromatid cohesion and in the
spindle assembly checkpoint (32).

Proteomic Assignment of CCSs

MS-based single-cell proteome analysis is an emerging
area. Recent advances in miniaturized sample preparation
(5, 9–11) suggest that routine proteome analysis of single
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somatic mammalian cells will be possible in the near future. In
comparison, single-cell transcriptomics as a mature field with
commercial kits is now available. In single-cell RNA-Seq
analysis (33), the deconvolution of CCS has been critical
(34, 35). This is because cell cycle variation contributes
significantly to the variation observed in a cell population. For
example, to identify cell fate trajectories during differentiation,
researchers relied on reference cell cycle–regulated genes in
order to identify the effect of cell cycle variation in the gene



Cell State Proteomics and Classification
expression differences observed (36). A validated reference
set of cell cycle–regulated proteins will be important for the
biological interpretation of single cell proteomic datasets.
We tested whether the abundances of the PsPs determined

in this study were sufficient to assign specific CCSs to cellular
proteomes (Fig. 5A). The abundance patterns for the 119
proteins for each sample (16 time points × eight replicates =
128 samples) were subjected to PCA. The two major PCs,
PC1 and PC2, explain 53% and 20.5% of the variance,
respectively, as shown in Figure 5B. Interphase (circles) and
mitotic (triangle) phases are separated predominantly along
PC1. To a lesser extent, subphases within each (e.g., see ar-
rows indicating P1 and P2) are separated along both PCs.
Moving counterclockwise, starting from the top right for P1,
the samples clearly follow a trajectory that reflects the position
of each sample in the cell cycle, starting from early G1 (P1 and
P2) to mitosis (left side, triangles). Telophase/cytokinesis
populations (P16, pink triangles) are situated between the
other mitotic populations and P1. To ease visualization, the
PCA was repeated using mean values per population (Fig. 5C).
Using unbiased and unsupervised methods, the PCA has ar-
ranged the populations into a cell cycle “wheel,” suggesting a
largely continuous process with the major separation along
PC1 correlated with interphase (P1–P8) versus mitosis (P9–
P16). It is less clear what is the major correlate for PC2. We
note however that there is a correlation with APC/C activity,
with active APC/C in populations with positive values along
PC2 (early G1 and end of mitosis) and inactive APC/C in
populations with negative values (S and G2).
Detection of relevant features is essential as PCA analysis

of the entire proteome dataset does not result in cell cycle
separation. Repeating the PCA analysis with cyclin A2 and
cyclin B1 removed essentially produces identical results,
which indicates that the relationships produced by using
~119 cell cycle marker proteins are robust toward the
absence of individual proteins, including key proteins that
drive cell cycle progression. This robustness will be impor-
tant in assigning CCSs in diverse datasets, as described
later.
We then asked whether the PCA classification could be

used to assign CCSs to cellular proteomes obtained in pub-
lished cell cycle fractionation and arrest experiments. Human
promyelocytic leukemia cells (NB4) were fractionated by
centrifugal elutriation into different cell cycle populations
(Fig. 5A, middle) (37). There are seven fractions (F0–F6), which
correspond to asynchronous (F0), and samples enriched in G1
(F1–F2), S (F3–F4), and G2&M (F5 and F6). In a separate
experiment, NB4 cells were arrested in G0 phase, S phase,
and G2 phase, respectively, using serum starvation, hy-
droxyurea, and the CDK1 inhibitor RO-3306 (RO) (Fig. 5A,
right) (2). Label-free quantitation intensities were normalized to
asynchronous cells, and these ratios were combined with
mean-normalized data from this dataset prior to PCA.
Figure 5, D and E shows the combined PCA plots for the
elutriation and arrest datasets, respectively. The NB4 cell
populations are broadly separated according to the appro-
priate cell cycle phase. For example, as shown in Figure 5D,
F1 and F2 are positioned nearby P1 (early G1). F3 is in be-
tween P7 and P8 (late S/G2), and F4 is near P9 (late G2/early
mitosis). F5 is closest to P9, whereas F6 is in between P9 and
P10 (late G2/early mitosis). In Figure 5E, the serum starvation
samples are nearest the early G1 populations, P1 to P4. The
hydroxyurea samples are in between P7 and P8, which are
late S/G2 populations. The RO samples are positioned near
P9 to P11, which are late G2/early mitotic populations. We
conclude from these data that this signature can be used to
classify cell cycle–enriched label-free proteomes.
We next tested if the cell cycle signature can be broadly

applicable to assign CCS to a proteome. To do this, we made
use of a large set of stable isotope labeling by amino acids in
cell culture (SILAC) datasets curated in proteomeHD (38).
Incomplete synchrony and/or cell cycle enrichment will
generally lead to much poorer purities compared with FACS.
This lowers the resolution of classification for bulk population
samples, which likely contain mixtures of different phases
unless purified by FACS. This will not be the case for single-
cell proteomes, which will be by definition in a single-cell
state.
To facilitate assignment of CCSs to partially or completely

asynchronous bulk populations, we first used k-means
clustering to reduce the number of classes from 16 pop-
ulations to eight CCSs (Fig. 6A and supplemental Table S6).
PCA using these eight CCSs also shows the cell cycle
“wheel” (Fig. 6B). We then mapped chromatin proteomes
(nascent chromatin capture [NCC] and chromatin enrichment
proteomics) from synchronized cells, arrested with thymidine
(G1/S), 3 h thymidine release (NCC), RO (G2), or nocodazole
(M) (Fig. 6B). Although these samples were from a different
cell type than our cell cycle signature data (HeLa versus TK6)
and had been processed differently (chromatin-enriched
versus in-cell digest) as well as quantitated differently (SILAC
versus label free), these samples group according to the
appropriate cell cycle phase. For example, the G2 and
M-phase samples are grouped between CCS6 and CCS5,
which are early-to-mid mitotic states. By contrast, G1/S and
NCC samples are grouped with CCS2 and CCS3, which are
G1/S states.
One challenge for the systematic classification of a het-

erogeneous set of proteomics data are missing values,
because not all our 119 signature proteins were detected in all
experiments in ProteomeHD. We therefore employed
Spearman rank correlation to correlate the abundance of the
signature proteins in these chromatin proteomes with
the eight CCSs. For example, the M/G1S proteome shows the
highest correlation with CCS6 (Fig. 6, C and D), which is a
mitotic state.
Mol Cell Proteomics (2022) 21(1) 100169 13
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We subsequently applied this correlation approach sys-
tematically to all 294 experiments in ProteomeHD. We found
that ~15% of the experiments in ProteomeHD (47 of 294)
showed a high and significant correlation with one or more
CCS (supplemental Table S7). Many of these experiments
involve a cell cycle perturbation, including the NCC and
chromatin enrichment proteomics experiments described
previously (Fig. 6, B–D). These experiments also include other
types of perturbations, including differentiation, where cell
cycle arrest is an expected direct consequence. For example,
proteomes from THP-1 monocytic cells treated with phorbol
myristate acetate ester are highly correlated with G1 CCSs.
Phorbol myristate acetate treatment induces terminal differ-
entiation of these cells and leads to cessation of cell prolif-
eration. In total, ~50% of the proteomeHD experiments highly
correlated with a CCS can be linked directly to cell cycle
arrest.
From these data, we conclude that the signature robustly

and accurately assigns CCS across far ranging experimental
contexts, cell types, and quantitation strategies.
The remaining experiments with high correlation have less

obvious links to cell cycle. For example, Jurkat T cells are
treated with the HSP90 inhibitor geldanamycin for either 6 h or
20 h (Fig. 6E). Proteomes from 6 h treatment are highly
correlated with CCS1 (early G1). By contrast, proteomes from
20 h treatment are highly correlated with the G2/mitotic states,
CCS4 and CCS6. Geldanamycin has been reported to arrest
cells in G1 or G2 phases of the cell cycle. Interestingly, flow
cytometry analysis of cells treated with geldanamycin for 20 h
shows an accumulation of 4N DNA content cells, corre-
sponding to G2&M phase cells (39).
We also detect significant CCS signatures in experiments

that have no apparent link to cell cycle arrest, direct or in-
direct. In a study comparing untransformed breast epithelial
cells with breast cancer cell lines, three untransformed breast
epithelial lines, MCF10A, HMT-3522, and HMEC1, showed
significant correlation with one or more CCS. Cell lines were
compared using a super-SILAC approach against MCF7,
which is a hormone receptor-positive breast cancer line. Both
HMT-3522 and HMEC1 show strong correlation with early G1
states (CCS1). By contrast, MCF10A was correlated with S
phase (CCS4). Interestingly, MDA-MB-453 cultures also
showed correlation with CCS1. These data suggest that the
cell cycle distributions of these cell cultures are shifted
compared with MCF7. In a separate study, 16 of 62 LCLs
analyzed by proteomics to identify quantitative trait loci were
significantly CCS correlated (Fig. 6E). Interestingly, they were
correlated in different states: 12 correlated with CCS1 and/or
CCS2 (G1 phase) and the remaining four correlated with
CCS5 (G2/early mitosis). These data suggest that there is
significant heterogeneity in cell cycle distribution, impacting
at least 25% of the LCLs compared. How much of the het-
erogeneity in CCS correlation observed has a genetic basis
14 Mol Cell Proteomics (2022) 21(1) 100169
or is due to technical variation in cell culture handling will be
important to assess.
DISCUSSION

A major challenge with the comprehensive analysis of pro-
teomes from low cell number samples is sample preparation.
An on-column load of 200 ng peptide, the equivalent to the
protein content of approximately 2000 TK6 cells, is sufficient
material to obtain proteome coverage of >4000 proteins with
current instrumentation. Removal of detergents used to pro-
duce soluble cell extracts by use of membrane filters (6),
organic precipitation (with or without the aid of magnetic
beads) (7, 40), or SDS-PAGE gel extraction are protocols
involving several steps and repeated exposure to new plastic
surfaces that introduce opportunities for nonspecific peptide
and protein adsorption. Here, we have presented a minimal-
istic approach for preparing cells for proteomics called the “in-
cell digest.” Cells are fixed with formaldehyde and methanol to
effectively trap them in biochemical states, then directly
digested with trypsin, and desalted prior to LC–MS/MS
analysis.
We show that the in-cell digest enables reproducible and

quantitative analysis of proteomes from 2000 TK6 and
MCF10A cells using AMPL analysis. The AMPL approach
overcomes the low duty cycle of the Orbitrap Elite to enable
proteome analysis with a sensitivity comparable with current
instruments. Newer instrumentation with higher duty cycles,
including the TIMS-TOF Pro and Exploris 480, is expected to
enable conventional DDA and data-independent acquisition
analyses of proteomes at a similar depth with 2000 TK6 cells,
or alternatively, improve proteome depth further using
MS1-based matching methods.
The in-cell digest is compatible with other approaches of

low cell number sample preparation for MS-based prote-
omics. In-cell digested samples can be efficiently labeled by
isobaric tags, for example, tandem mass tag and isobaric tag
for relative and absolute quantitation, and therefore compat-
ible with use of carrier channels to boost the signal of rare or
single cell channels (e.g., iBASIL (41)). The protocol requires
no specialized humidified sample handling chambers or direct
loading onto premade analytical nanoLC columns, such as
those described in the nanoPOTS workflow (11). While the
proteome coverages obtained by nanoPOTS is higher than
reported here, it is possible that a new workflow combining
aspects of the in-cell digest and nanoPOTS could improve
both generalizability and performance compared with either
method.
Each sample preparation method will have its unique ad-

vantages and potential biases, which we evaluated by quan-
titatively comparing the in-cell digest with a more conventional
in-solution digest. This analysis revealed an over-
representation of membrane proteins amongst those proteins
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with higher abundance measured in the in-cell digest samples.
These proteins include mitochondrial membrane proteins
(e.g., TOMM7) and proteins that are known to be localized to
the cell surface (ADAM15). Membrane proteins have been
shown to irreversibly aggregate in soluble extracts when heat
treated and precipitated. Delipidation by methanol, which is
used to increase cell permeability, could also play an impor-
tant role in increasing digestion efficiency of membrane pro-
teins by trypsin. We suggest that the higher abundances
measured for membrane proteins is unlikely to be an artifact of
the in-cell digest; in contrast, the measurements are likely to
more accurately reflect the abundances of these proteins in
cells.
Feature matching FDR is controlled in our approach by

implementing stringent cutoffs for retention time difference,
m/z difference, and match m/z error. Using a chemically
modified “decoy” proteome, we demonstrate that these
cutoffs reduce the false positive rate with minimal impact on
true positives. Elution time filtering provided greater
discrimination between true and false positives than mass
accuracy, suggesting that further improvements in chro-
matographic precision will benefit FDR control. We detect a
higher estimated FDR compared with previous published
models using mixed species (42). However, our analysis
differs in two significant aspects: (1) unlike matching between
individual “single shot” analyses, our experimental approach
assesses match FDR from a fractionated library to a single
shot analysis, and (2) unlike a mixed species proteome, our
decoy proteome lacks true positives that could prevent
assignment to false-positive features. The latter means our
reported FDR is likely an overestimate but does provide a
metric for assessing the relative FDR when filtering on feature
match parameters. In addition, models based on mixed
species suggest that matching FDR increases at low sample
loads. It will be important in future to assess this with AMPL.
In this study, comparable on-column loads between FDR
estimation and cell cycle analysis, and therefore, we are
confident in the performance of false-positive removal in the
cell cycle dataset.
We identify novel proteins whose cell cycle function has not

been previously characterized. FAM111B is a PsP in cluster 1
(Fisher's p1 < 0.001, p2 = 0.06), showing peak levels in
S-phase populations, followed by a decrease in G2 pop-
ulations. FAM111B is poorly characterized despite its
expression being associated with poor prognosis in pancre-
atic and liver cancers (Human Protein Atlas (43)) and mutation
causative for a rare inherited genetic syndrome (hereditary
fibrosing poikiloderma with tendon contracture, myopathy,
and pulmonary fibrosis). FAM111A, the only other member of
the FAM111 gene family, localizes to newly synthesized
chromatin during S phase, interacts with proliferating cell
nuclear antigen (PCNA) via its PCNA-interacting protein box,
and its depletion reduces base incorporation during DNA
replication (44). FAM111B also contains a PCNA-interacting
protein box (residues 607–616). Data from HeLa S3 cells
also suggest that FAM111B is a cell cycle–regulated protein
with peak levels in S phase (45). FAM111B contains D-box
and KEN-box motifs that are recognized by the APC/C E3
ligase to ubiquitinate targets for proteasomal degradation.
Because of the similarity with FAM111A in sequence, pre-
dicted interactions with PCNA, and peak protein abundance in
S phase, we propose that FAM111B also is likely to play a key
role in DNA replication.
We present an unbiased pseudotemporal analysis of protein

abundance changes across eight biochemically resolved
mitotic states with a resolution extremely challenging to obtain
with high precision using arrest and release methodologies.
The frequency of PsPs identified (1.7%; 119/6899) compares
well with a recent antibody-based screen for cell cycle–
regulated proteins (2.6%; 331/12,390) (46). Included in 331
hits are proteins that vary in subcellular localization but not
abundance across the cell cycle, consistent with other data-
sets using biochemical fractionation (47). PsPs identified in
this study will be limited to proteins that change in abundance.
However, these PsPs are critical for robust cell state classifi-
cation of proteomes obtained by MS, most of which do not
involve subcellular fractionation.
A high proportion of proteins in clusters 4 and 5 (24/69;

35%) are experimentally validated APC/C substrates, which
represents a 70-fold overrepresentation in these two clusters
compared with nonpseudoperiodic proteins (0.5%). The high
mitotic phase resolution and purity obtained in this study
enabled characterization of protein abundance variation of
APC/C substrates in mitosis. We identify two waves
of mitotic degradation, one coinciding with the destruction of
cyclins A and B (cluster 4) and the second at mitotic exit
(cluster 5). The unbiased clustering failed to separate cyclin A
and cyclin B, which are degraded in prometaphase and at the
metaphase-to-anaphase transition, respectively. This can be
explained by the relatively few proteins detected that corre-
late with cyclin A and is consistent with the idea that
prometaphase degradation by the APC/C is highly selective.
About 44 proteins in clusters 4 and 5 have not been
previously experimentally validated as APC/C substrates (29)
and are candidates for future follow-up analysis as novel and
uncharacterized substrates. These include proteins (e.g.,
PRC1, KIF23, KIF20A) that were not identified as APC/C-
Cdh1 and APC/C-Cdc20 substrates by bioinformatics
analysis of coregulation (48) and by chemical biology
approaches (49, 50).
High-resolution classification of CCS is an important pre-

requisite to obtaining meaningful biological insights into
single-cell “omics” data. However, datasets on the cell cycle–
regulated transcriptome and proteome generally provide low-
time resolution, particularly in mitosis. Mitotic time resolution
will be crucial for interpreting single-cell proteomes. Whereas
transcriptional and translational activity are dampened during
mitosis, there are major changes in protein phosphorylation
Mol Cell Proteomics (2022) 21(1) 100169 15
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and protein abundance, which will contribute toward single-
cell proteome variation.
Here, we have identified a robust cell cycle signature

composed of the abundances from 119 PsPs that can be used
to classify the CCS of a cell population by virtue of its cellular
proteome. We apply this signature to assign CCSs to hun-
dreds of published proteomic datasets that range in cell type
and experimental condition. We have not tested if this signa-
ture can be used to assign proteomes from species other than
human. We note that many of these proteins are well
conserved, with several conserved to yeast (e.g., cyclin,
REC8, aurora kinase, polo kinase). We anticipate that this
high-resolution cell cycle signature here will be important to
understand the biological implications of emerging single-cell
proteomics datasets (9, 10), particularly in systems where cell
cycle phase differences are an underlying source of variation,
as is frequently the case.
Formaldehyde fixation is used frequently as a precursor to

intracellular immunostaining for cellular analysis and for
inactivating cells that potentially harbor infectious agents, for
example, viruses. We have shown that mild formaldehyde
treatment is compatible with comprehensive and quantitative
proteomics with low cell numbers. We anticipate that the in-
cell digest will be broadly applicable to characterize the pro-
teomes of formaldehyde fixed and virally infected cells.
Recently published data suggest that formaldehyde crosslinks
can be directly detected from MS data (51). We anticipate the
in-cell digest would enhance the sensitivity of crosslink
detection and lead to an increase in identified protein–protein
interactions. The rarest target population are cells in late
anaphase of mitosis, which are present in 0.01% of an
asynchronous TK6 culture.
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