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Abstract

There are multiple reasons why the next generation of biological and medical stud-

ies require increasing numbers of samples. Biological systems are dynamic, and the

effect of a perturbation depends on the genetic background and environment. As a

consequence, many conditions need to be considered to reach generalizable conclu-

sions. Moreover, human population and clinical studies only reach sufficient statistical

power if conducted at scale andwith precisemeasurementmethods. Finally,many pro-

teins remain without sufficient functional annotations, because they have not been

systematically studied under a broad range of conditions. In this review, we discuss

the latest technical developments in mass spectrometry (MS)-based proteomics that

facilitate large-scale studies by fast and efficient chromatography, fast scanning mass

spectrometers, data-independent acquisition (DIA), and new software. We further

highlight recent studies which demonstrate how high-throughput (HT) proteomics can

be applied to capture biological diversity, to annotate gene functions or to generate

predictive and prognostic models for human diseases.

KEYWORDS

biomarker discovery, data-independent acquisition, dynamic biological systems, gene annotation,
precisionmedicine, proteomics

1 INTRODUCTION

Proteins are the functional units of cells and their coordinated expres-

sion and action enable biological processes. They dynamically change

in abundance and/or undergo modifications during cell differentia-

tion, changes in the environment, during aging, the development and

Abbreviations: CSF, cerebrospinal fluid; DDA, data-dependent acquisition; DIA,

data-independent acquisition; FAIMS, high-field asymmetric waveform ionmobility

spectrometry; FASP, filter-aided sample preparation; FFPE, formalin-fixed

paraffin-embedded; HT, high-throughput; KO, knock-out; MS, mass spectrometry; PAC,

protein aggregation capture; qTOF, quadrupole time-of-flight; SP3, single-pot

solid-phase-enhanced sample preparation; SWATH, sequential windowed acquisition of all

theoretical mass spectra; UHPLC, ultra-high-performance liquid chromatography.
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progression of disease or in response to drug treatment. Thus, the com-

prehensive measurement of proteins in cells, body fluids, or tissues

is key for basic research, medicine, and biotechnology. Mass spec-

trometry (MS)-based proteomics can be used for identification and

quantification of thousands of proteins in biological samples [1, 2].

For many years proteomics made remarkable progress in increasing

proteome coverage, or proteomic depth, in the analysis of biologi-

cal samples [3–6]. These developments were driven by the situation

thatmany biological questions are centered around individual proteins

and/or protein complexes [7]. The biological thinking for most of the

molecular biology area hence demanded technologies that detect a

specific protein of interest, even if low abundant, but had moderate
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(A)

(B)

(C)

F IGURE 1 The nature and diversity of biological systems creates a need for high-throughout (proteomics) experiments. (A) Left panel: In
clinical studies, high inter-individual variability and heterogeneity, mixedwith limited effect sizes, can result in low statistical power, if sample sizes
are limiting [8–11]. Right panel: Discovery proteomics measures large numbers of proteins. However, this decreases the statistical power of
individual proteins asmultiple testing corrections need to be applied. Further, many features (proteins) but low numbers of samples can potentially
result in overfitting of machine learning algorithms. (B) The response of a biological system to a perturbation (such as a knock-out, drug treatment
or stress exposure) depends onmany factors such as genetic background or environmental conditions. In order tomake generalizable conclusions
from protein expression changes, these factors need to be taken into account which requires themeasurement of large sample sets consisting of
many different conditions. (C) High-throughput proteomics allows new dimensions in gene function annotation: (1) Reverse proteome profiling for
protein centric analysis: studying the behavior of proteins across many conditions (e.g., mutants, knock-outs) can provide functional information.
(2) Covariation analysis: s functionally related proteins are co-regulated, the covariation of proteins across many conditions can be used for
functional assignment [18].

demands on sample numbers andmeasurement consistency over large

sample sets or over multiple batches.

Recent developments have prompted a conceptual shift. When

studying complex biological systems, many samples are required to

reach sufficient statistical power (Figure 1A). In clinical applications,

samples are often heterogeneous and have high inter-individual

variability [8–11]. Low sample size indeed might be one of the main

reasons why biomarker studies often fail in validation [12]. Moreover,

protein changes can be buffered, and changes can thus have low

effect sizes [8]. Eventually, statistical tests on thousands of proteins

at the same time require multiple testing corrections, many clustering

methods struggle with multidimensional data, and machine learning
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models easily overfit, if the sample numbers are low in comparison to

the number of variables themodels are trained on. In these cases, large

sample numbers with sufficient replicates, and precise measurements,

help to alleviate these limitations.

There are other pressing needs which demand a scaling of biolog-

ical experiments. Biological responses depend on a large number of

genetic and environmental factors. Considering a limited space of con-

ditions might lead to context specific results that are not generalizable

(Figure 1B). However, testing multiple conditions to the extent that

it captures biological signals quickly scales the size of experiments,

requiring high-throughput (HT) and cost-effective methods.

Finally, large-scale systematic analyses, that involve many con-

ditions, could help to solve another major bottleneck of current

biomedical research. Despite intense research efforts, a large fraction

of genes remain without sufficient functional annotation, and research

still overly concentrates on a subset of genes already known in the

pre-genomic era [13–15]. This not only hampers amajor goal of molec-

ular biology—the explanation of phenotypes from genotypes—but also

means that we miss potential targets for drug design and biotechnol-

ogy. Studies in yeast have shown that combining genome-wide pertur-

bation approaches with transcriptomics, proteomic, or metabolomic

technologies constitutes a powerful tool for systematically capturing

missing gene function [16–18].

2 HT PROTEOMICS EXPERIMENTS

Proteomics is increasingly facilitating biological experiments at scale.

The basic precondition is the necessity to achieve high sample through-

put in a reasonable amount of time and at a low cost per sample. How-

ever, HT proteomics is not simply a question of running more samples,

that is, “scaling up.” Successful proteomic screens or biomarker dis-

covery studies require dedicated techniques for experimental design,

sample preparation, instrumentation and data analysis. Here, we pro-

vide a survey of recent technological developments that allow faster

andmore robust proteomics measurements. Further, we highlight sev-

eral pioneering large-scale studies in systems biology and biomedical

research with sample sizes ranging from 100s to 1000s of samples.

Large-scale studies are not necessarily “high throughput” but they face

similar challenges in terms of data analysis and interpretation and are

thus covered in this review as well. While non-MS based technolo-

gies such as aptamer [19] and antibody based [20] proteomics are

also increasingly used for large-scale proteomics of human samples

[21], this review focuses on MS-based technologies and in particular

data-independent acquisition (DIA) methods.

3 WHAT MATTERS MORE, PROTEOMIC DEPTH,
PRECISION, OR THROUGHPUT?

Often, large proteomics experiments require a compromise between

proteomic depth on the one hand, and precision and throughput on

the other hand. Obviously all three factors are important, but the indi-

vidual importance of depth, precision, and throughput depends on the

biological question. If one is ultimately interested in detecting certain

low abundant proteins (e.g., several transcription factors, or extracel-

lular signaling proteins such as cytokines are low abundant) depth

is arguably a key variable in a proteomic experiment. However, the

importance of depth decreases with sample size, because biological

systems are organized in networks [22–24]. This means that biological

responses involve concentration changes of many proteins [8, 25, 26]

which not all need to be quantified to detect the response (Figure 2).

With the advent of multiparametric statistics and machine learning in

biomedicine, combined with a better understanding of biological net-

works, this situation increasingly triggers a conceptual shift: the need

for understanding biological systems that are organized in networks,

makes it less crucial to quantify every single protein each time. Rather,

it becomes more important to study many different conditions, and to

learn how to interpret "signatures" that capture part of the response

[7, 27].

4 STUDY DESIGN

A HT proteomics experiment starts with an appropriate study design.

While this may sound trivial, not accounting for the specific require-

ments of large-scale studies is a frequent mistake made in such

endeavors. For instance, one needs to provide provisions to correct

for batch effects—a problematic ingredient, or hidden enemy, of any

large-scale proteomic study. In other words, one needs to avoid that

biological signals/sample groups correlate with technical factors, lead-

ing to incorrect interpretation of the results. Although batch effects

cannot be completely eliminated, they can be significantlymitigated by

blocking and randomizing the samples [28–31]. For diagnosing batch

effects it is crucial to include enough quality control samples. Using

technical as well as whole process QC samples can dissect batch

effects related to the instrument from sample preparation related

batch effects.

In clinical studies, additional factors that are beyond the control of

the analytical laboratory need to be considered. The success of large-

scale biomarker studies depends on well-defined and balanced sample

cohortswhich are challenging to access and recruit. Further, it is impor-

tant that sample collection techniques are standardized within a study

and that they do not confoundwith the disease/control groups [32, 33].

Sample quality markers can help in assessing such sample collection

relatedbiases [9, 34]. It is believed thatmany clinical studies, not only in

proteomics, fail because of confounding effects and inadvertent batch

effects [29, 35–37].

While certainly many studies are underpowered or consider an

insufficient number of experimental conditions, more samples are not

always better as other factors such as ethical aspects, resources or

sustainability need to be considered as well. Thus, sample size calcu-

lations and power analysis are key parts of a large-scale study design

[38].
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F IGURE 2 Signatures capture responses in biological networks, even if not all proteins are quantified. A perturbation induces protein
abundance changes, and functionally related proteins are often co-regulated (indicated by the same color code). The underlying biological network
can be capturedwith precise technologies, even if some of the proteins are not detected. Large sample numbers and increasing biological
knowledge about networks hence compensate for the finite depth of proteomic measurements.

5 SAMPLE PREPARATION

Proteomics workflows typically involve multistep sample preparation

procedures. Large-scale projects, therefore, demand for parallelized

and standardized sample preparation techniques. Additionally, work-

flow automation can help in large-scale studies to reduce human error

and increase reproducibility and longitudinal stability [39–41].

Several multiwell-plate-based workflows that are streamlined and

automatable have been developed, and help to scale sample prepara-

tion [39, 40, 42–47]. HT sample preparation workflows can be broadly

categorized into protocols that use in-solution digestion with stan-

dard solid-phase extraction [44, 48–50], StageTips [42, 43, 51, 52],

protein aggregation capture (PAC)/single-pot solid-phase-enhanced

sample preparation method (SP3) [47, 53, 54], S-Trap [55], and filter-

aided sample preparation (FASP) protocol [56–59]. For example, the

SP3 method has a focus on versatility, and is compatible with a broad

range of detergents and requires only little input material [53]. Other

teams developed streamlined protocols for FFPE tissue samples [53,

60–63], which are of particular interest for clinical HT applications due

to their long-term stability and the large amount of well characterized

archived samples [64]. Dedicated methods for the large-scale anal-

ysis of post-translational modifications, such as phosphoproteomics

have been developed as automated workflows and 96-well-plate-

compatible enrichment steps [47, 65–70]. Further, HT workflows have

been specifically developed for plasma/serum depletion [46, 70], yeast

samples [18, 71], and Escherichia coli samples [72].

6 CHROMATOGRAPHY

Chromatography is an integral part of quantitative LC-MS-basedwork-

flows, and a key determinant of the throughput and longitudinal preci-

sion of a proteomics experiment. The gradient length as well as column

wash and equilibration times define the total run time. In order tomake

short gradients applicable, chromatographic systems ideally operate

with short overhead times (column wash and equilibration time). This

has been achieved by increasing flow rates over the proteomics-typical

nanoliter flow rate chromatography to capillary/micro-flow rates (5–

50 µl/min) [49, 60, 73–76] up to analytical flow rates (800 µl/min)

[44, 77]. Increased flow rates reduce dead times and solvent delay

times and result in shorter wash and equilibration times. At the same

time, higher flow rates result in increased robustness, spray stability,

and less carry-over [44, 60, 73, 75]. The main downside of high-flow

chromatography is the higher sample dilution, requiring higher sam-

ple amounts per injection compared to lower flow rates. However,

with instruments gaining in sensitivity, high flow rate chromatography

is increasingly applicable to proteomics. For example, with the latest

generation of qTOF instruments, we have recently shown that with

just 1 µg injection amount, more than 4000 proteins can be quantified

in a digested human cell lysate with 5-min high-flow chromatography

(800µl/min) [78]. High-flow chromatography is therefore attractive for

many applicationswhere robustness and shortmeasurement times are

required such as clinical applications (e.g., plasma, serum) [44, 77, 79]

or screenings of cell lines or microbial samples [50, 77].

Another innovative development is chromatography with pre-

formed gradients, for instance, as implemented in the Evosep One

system, which is designed for medium up to HT applications that

require short overhead times [80]. This technology has been success-

fully applied in gradients of<6min [81, 82]. The platform runswith low

flow rates, which addresses studies where only low sample amounts

are available [80].

In general, short gradient chromatography is driven by advanced

chromatographic systems and new column technologies that enable

highpeakcapacities even in short separation times. The increasedpres-

sure limits of modern UHPLC systems and columns enable the use of

small particles for fast andefficient separations. Further, new technolo-

gies such asmicropillar array columns (PAC) [83], or core shell particles

[84] increase the efficiency of peptide separations.
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7 MS INSTRUMENTATION AND ACQUISITION
METHODS FOR HT PROTEOMICS

The use of short chromatographic gradients necessitates the ability of

the mass spectrometer to measure the eluting peptides at speed. As

data-dependent acquisition (DDA)methods select individual precursor

ions forMS/MS fragmentation, the proteomic depth they could achieve

is limitedat fast gradients by theMS/MSscan speed. Even though latest

generation time-of-flight (TOF) instruments can measure more than

100MS/MS scans per second [85], this factor still places DDA at a sig-

nificant disadvantage when coupled to fast chromatography. Thus, the

focus of HT proteomics has been placed on DIA, a technology that is

rapidly becoming the new standard for proteome quantitation. In DIA

methods such as Sequential Windowed Acquisition of all THeoretical

mass spectra (SWATH-MS), the mass spectrometer cycles through a

predefined set of wide Q1 quadrupole isolation windows, repeatedly

isolating and fragmenting all the precursor ions within the mass range

of interest [86]. HTDIAmethods are driven byMS instrument develop-

ments that enable higher ion transmission efficiencies and shorter duty

cycles. This is due toQ1 isolationwidths being dependent on the appli-

cableMS/MSduty cycle. Shorter duty cycles enable a higher number of

narrow isolationwindowswhich increases selectivity, that is the ability

to separate signals from different peptides.

While early DIA methods often produced a lower proteomic depth

compared to DDA methods, over time, DIA has been shown to

increase proteomic depth, data completeness, robustness and quan-

tification accuracy, specifically in proteomics experiments that use fast

chromatographic gradients [65, 71, 87–89]. Two independent studies

addressed the reproducibility of DIA-based discovery workflows. The

inter-lab reproducibility was assessed on the quantification of more

than4,000proteins in aHEK293cell line across11 labsworldwide [90].

Moreover, in an intra-laboratory benchmark study, 1560 runs acquired

along a 4 month period and across six different platforms demon-

strated that longitudinal data acquired on multiple instruments can

be integrated into the same dataset [91]. The benchmark studies indi-

cate that parallelization is feasible, providing confidence for large-scale

protein-quantification studies where samples are measured in several

laboratories or on different instruments.

Stable and robust longitudinal data acquisition is prevented by

signal drifts resulting from contaminations. Therefore, robust instru-

mentation that reduces the number of cleaning cycles is particularly

important in large-scale experiments. Ion-mobility devices such as

FAIMS or TIMS trap can prevent neutral or singly charged ions from

entering the orifice of the mass spectrometer [81], keeping the instru-

ments cleaner for longer periods. Further, instrument geometry suchas

the 90 degrees bent at the entrance of the TIMS device in the timsTOF

pro increased robustness and prevented cleaning of the quadrupoles

for more than 1.5 years [92]. Further, the instruments that use TIMS

[82] or Zeno trap [93] increase the fragment ion signal, enabling

decreased injection amounts in HT proteomics [78] and hence reduce

contamination.

8 NEW ACQUISITION TECHNIQUES FOR FAST
DIA EXPERIMENTS THAT ACHIEVE HIGH
PROTEOMIC DEPTH

A challenge of DIA in comparison toDDAmethods has been the lack of

precursor mass assignment to the MS2 traces. In SONAR [94, 95], and

Scanning SWATH [77] a Q1 quadrupole continuously slides across the

mass range of interest, as opposed to "discrete" cycling through pre-

defined isolation windows in standard DIA. Relating the continuously

recorded MS/MS signal to the position of the sliding Q1 quadrupole,

allows to pinpoint the precursor mass corresponding to an observed

fragment trace with a precision defined by the transmission profile

of the quadrupole. This provides an extra "Q1" dimension of informa-

tion, that promotes computational deconvolution of the data. Scanning

SWATH is thus particularly beneficial for fast chromatography meth-

ods, gaining up to 70% in precursor identifications at 5-min gradients

[77], quantifying over 5000 proteins from a k562 whole-cell tryptic

digest using the DIA-NN software [96].

Ion-mobility devices can decrease spectral complexity and add

another separation dimension to LC–MS platforms [5]. In dia-PASEF

technology [82, 97], trapped ion mobility separation (TIMS) [98] is

explored to separate charged precursor ions based on their flight times

through neutral gas, determined by the ion collisional cross section.

The additional separation improves selectivity, but it also increases

sensitivity via its ability to carry out MS/MS scans while trapping the

incoming ions for future scan cycles. Further, single charged ions can

be excluded from fragmentation, reducing the background noise. The

dia-PASEF technology likewise shows performance with fast methods,

quantifying over 6000 proteins in 11min [99] andmore than 5000 pro-

teins in 4.8min [100]. Further, DIA-PASEF has been applied to quantify

12,000 phosphopeptides in 15minmeasurements [101].

The effect of reducing the background signals is also explored by

the FAIMS technology [102, 103], which also utilizes ion mobility for

extra separation of peptides. Unlike the trapped ion mobility concept

employed in PASEF, FAIMS does not operate as a trap, but filters the

incoming ions. FAIMS-DIA has likewise been shown to perform well

with short gradient methods [81]. The FAIMS interface has been fur-

ther used in combination with direct infusion and DIA, quantifying

more than 500 proteins withinminutes ofmeasurement time, enabling

fast proteomic measurements without liquid chromatographic separa-

tion [104].

Another recent technology termed ZenoSWATH uses an ion trap

before the TOF analyzer to sequentially release the ions from high to

low m/z [93, 105]. This centers the ions in the TOF accelerator for

nearly 100% duty cycles, achieving a sensitivity increase by the factor

of 5–15 [105], depending on the fragment m/z [78]. This enables fast

scan speeds, allowing for acquisition schemes with larger numbers of

narrow isolationwindows, producing cleaner and less convoluted spec-

tra. We have recently demonstrated that the ZenoSWATH approach

allows quantification of about 5000 proteins in 5 min gradients from

awhole-cell tryptic digest standard (K562) [78].
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9 DATA PROCESSING FOR HT PROTEOMICS

Before the advent of HT proteomics, the data processing software

was optimized for handling long-gradient data and failed to confi-

dently identify peptides from data acquired using 30-minute or faster

gradients [95]. Shorter gradient runs, characterized by lower peak

capacity, result in highly complex DIA data, requiring software tools

that are capable of deconvoluting signals and removing interferences.

The first DIA software specifically developed to support fast pro-

teomic experiments, DIA-NN, uses neural networks to filter out false

precursor-spectrum matches and thus enable confident identification

and quantification of peptides and proteins in short gradients [95].

Further, the commercial software Spectronaut [87] has been suc-

cessfully used for the analysis of short gradient DIA runs [81, 99,

101], demonstrating its applicability for large-scale and HT discovery

studies.

For the downstream analysis, severalmethods have been developed

for large-scale datasets, including specific normalization strategies,

batch correction, missing-value replacement, and statistical testing

[91, 106, 107]. In addition, tools for quality control and management

have been developed [108–110] that are particularly relevant for

large-scaleprojects toensure long-termstability andavoid instrument-

specific batch effects.

10 NORMALISATION, BATCH EFFECTS AND
MISSING VALUES

Large-scale studies are often run on multiple instruments in parallel

and across a long period of time [18, 91, 111], with time-dependent

signal drifts and cleaning cycles [112]. Further, non-standardized pro-

tocols, reagent lots or different lab personnel can introduce additional

biases [112]. Mitigating such artifacts requires appropriate normaliza-

tion, batch effect correction and imputation strategies.

Proteomics datasets are usually normalized to adjust for differ-

ent injection amounts and/or instrument dependent changes in signal

intensities. Therefore, the distributions of all peptides/proteins (e.g.,

medians) are aligned between samples [35]. Such normalizations, how-

ever, are based on the following assumptions: (1) all proteins have a

linear response and (2) the total protein amount remains constant.

Both assumptions need to be carefully considered, if samples are very

heterogeneous or total intensities vary a lot between samples.

In addition to normalizations, batch effect corrections can be

applied to correct discrete batch effects or drifts. In contrast to

normalization, batch effect corrections are applied on feature level

(protein/peptide). Drifts can be corrected by fitting and subtracting a

linear or a non-algorithm (e.g., LOESS functions). For the correction

of discrete batch effects several algorithms exist such as median cen-

tering, ComBat or RUV-III-C [35, 91, 113]. The selection of the right

batch correctionmethod depends on the batch sizes, sample type (e.g.,

heterogeneity of the samples), robustness of the workflow (standard-

ization) and instrument type. Further, the alignments can be either

conducted on the basis of QC samples or with all samples, depending

on the heterogeneity of the samples as well as on the number of QC

samples included. Thus, good experimental design is an integral part of

any large-scale proteomics experiment (see section above about study

design).

Finally, missing values can be related to technical artifacts (i.e., the

limit of detection is dependent on instrument status). Thus, using left-

censored imputation strategies (such as zeros, minimum values, and

others) can introduceadditional batcheffects andartifacts. Large-scale

proteomics datasets thus require special imputation strategies, such

as mixed imputations that distinguish between batch and non-batch

relatedmissing values based on defined cutoffs [18].

11 DIA PROTEOMICS WITH MULTIPLEXING

Multiplexed proteomics allows for simultaneous analysis of multiple

samples in a single MS acquisition. Thus, multiplexing via chemical

labeling of peptides has the potential to provide higher throughput in

mid-size experiments. DDA-based multiplexing with isobaric tags such

as TMT [114], or iTRAQ [115] or non-isobaric labeling with mTRAQ

[116] or dimethyl labeling [117] have found wide applications in pro-

teomics. Recently, the introduction of a 16-plex label (i.e., TMTpro)

has facilitated 16 measurements in parallel [45, 118, 119]. It has been

demonstrated that combining the 16-plex TMT with FAIMS Pro and

real time search enables the measurement of 16 samples in a 3-h DDA

run [45].

Until recentlymultiplexedDIAmethodswerehamperedby the com-

plexity of the data processing. Recently, a multiplexing module in the

DIA-NN software has been specifically tuned to take advantage of

the co-elution of peptides which are differentially isotopically labeled.

This resulted in the development of the plexDIA technology [120],

which offers three-fold increased throughput of DIA proteomics, using

mTRAQ tagging, while maintaining comparable data quality. Most

importantly, plexDIA is applicable to any chromatographic setup, and

allows for HT proteomics at low flow rates, thus combining speed and

sensitivity. For example, plexDIA enables measuring about 1000 pro-

teins in single U-937monocytes on a timsTOF SCP instrument (Bruker

Daltonics), using a 15-min gradient, that is, 5-min per cell considering

the 3-plex setup [120].

12 APPLICATIONS OF HT PROTEOMICS IN
BIOMEDICAL STUDIES

One promising application of HT proteomics is the analysis of clinical

specimens such as biofluids and tissue samples for exploring clini-

cal phenotypes, revealing molecular dysregulation, discovering new

biomarkers, and eventually, to create prognostic and predictivemodels

for diseases.

Blood is a rich source of biomarkers, easily accessible and routinely

collected [121]. Therefore, many large-scale studies focused on plasma
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and serumsamples. Theeffect ofweight-loss on theproteomehasbeen

studied in 52 obese participants, along 8weeks (1294 plasma samples).

In total, 93 proteins changed with weight, including apolipoproteins

and other proteins involved in lipid metabolism, and it was found that

weight loss is associated with reduced low-grade inflammation [42].

Another weight-loss study generated an even larger dataset of 1508

samples. With a throughput of 31 samples per day, this study identi-

fied on average 408 proteins and quantified those with quantification

precision (CVs) of 10.9% [49]. These two independentweight-loss stud-

ies both identified the same panel of apolipoproteins as the most

significantly changing proteins, despite employing different technolo-

gies (DDA and DIA). Recently, alcohol-related liver disease biomarkers

were discovered in a cohort with 569 individuals, measured in just

3 weeks. The biomarker panel enabled prediction of fibrosis as well

asmild inflammation, outperforming conventional clinical assays [122].

Large-scale plasma proteomics was further applied to dissect protein

variability into genetic, environmental, and longitudinal factors by ana-

lyzing a twin study (232 samples) [123], and to identify aging markers

bymeasuringproteomes (amongothermolecular data) of 106 individu-

als over 48months [124]. Further, the progress inMSbased technology

hasenableddeepplasmaprofiling even in large-scale studies asdemon-

strated in a cancer cohort of 180 plasma samples, identifying 2732

proteins and reporting several biomarker candidates [71].

While plasma and serum are the most frequently analyzed body

fluids, large-scale studies have also been conducted for cerebrospinal

fluid (CSF) [51, 125] and urine samples [126] to find proteins associ-

ated with Alzheimer’s disease [51] and Parkinson’s disease [125, 126].

A large-scale study has also been performed of bone marrow biopsies,

measuring quantitative proteomes of 252 patients with acute myeloid

leukemia and identifying different disease subtypes [127].

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has

reported a range of tumor-tissue studies that are not necessarily HT

but have sample sizes larger than 100 [128-136] and are thus worth

mentioning in this review. These studies focus on proteogenomic anal-

ysis, identifying cancer-relevant pathways or potential therapeutic

targets. Thedata are available on theCPTACportal [137],making these

datasets a rich and comprehensive resource for studying cancer biol-

ogy. Thepredictionof drug responses toplatinum in130ovarian serous

carcinoma patients [138] as well as the identification of disease sub-

types in 204 FFPE prostate cancer samples [60] and 110 early-stage

hepatocellular carcinoma [139] indicate thepotential of proteomics for

patient stratification and personalized therapies.

13 CLINICAL PROTEOMICS EXEMPLIFIED BY
THE COVID-19 HOST RESPONSE

The COVID-19 pandemics has highlighted the value of HT DIA pro-

teomics to rapidly foster a molecular understanding of a disease, and

to identify biomarker panelswith diagnostic, predictive, andprognostic

value.

To this end,withinmonths after the outbreak of SARS-CoV2, plasma

proteomics successfully provided a molecular map of the patient

response to the virus, highlighting the impact of the innate immune

system, blood coagulation, complement, and acute phase response

proteins [44, 140, 141]. Next, we and others showed that identified

plasma protein profiles can successfully classify COVID-19 severity,

and are prognostic of disease outcome, outperforming established clin-

ical scores [44, 78, 100, 142, 143]. This demonstrated that plasma

proteomics could be a valuable tool to assist clinical decision making

and drug development.

Further, it became evident that a set of peptides was sufficient

for outcome prognosis [144] or severity stratification [44, 79]. This

was crucial for the next step in translating such peptide signatures

into a clinical assay, which required multiplexing capabilities, abso-

lute quantification, and a conversion to the analytical instrumentation

available to routine diagnostics labs, that is, high-flow chromatog-

raphy coupled to triple-quadrupole mass spectrometers. Facilitated

by the use of high-flow LC coupled with DIA proteomics, we then

converted a panel of peptides selected by discovery proteomics for

COVID-19 to a multiplexed, targeted multiple-reaction-monitoring

(MRM)method combinedwith the use of isotope-labeled protein stan-

dards for absolute quantification [145]. The assay, which operates

on triple-quadrupole instruments, successfully stratified severity and

was prognostic about outcome of COVID-19 disease in a multi-cohort

clinical study [145].

The outlined workflow of using HT DIA for the discovery of

biomarker panels that are translated toMRM based absolute quantifi-

cation assays highlights a potential route for MS-based proteomics to

enter routine diagnostic labs and regulated environments. This might

be crucial to drive precision medicine and the development of a new

generation of targeted treatments.

14 HT PROTEOMICS IN SYSTEMS BIOLOGY

Protein expression levels depend on many factors such as localization,

genetic background, or environment. Understanding those dependen-

cies can guide protein function annotations, disease models and the

discovery of new drug targets. With the increased throughput, pro-

teomics has matured to a technology for screening 100s to 1000s of

different conditions. Therefore, several groups have used proteomics

in recent years to systematically characterize different cell types,

organisms, and tissues as well as systematically mapped different

genotypes, or perturbations.

Several studies functionally characterized cancer cell lineswith pro-

teomics [113, 146, 147]. The largest and most comprehensive cancer

cell line map includes 949 cancer cell lines across 28 tissue types

and represents a major resource for target identification and for

studying the relation between phenotypes and proteomes [110]. Our

group characterized the proteome diversity of 1011 natural yeast iso-

lates and enabled the systematic analyses of aneuploidies, revealing

chromosome-wide dosage compensation at the proteome level which

was associated with increased degradation [50].

With higher throughput of proteomics technologies, systematic

screens of loss of function mutants became a promising tool for gene

 16159861, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202200013 by N
H

S E
ducation for Scotland N

E
S, E

dinburgh C
entral O

ffice, W
iley O

nline L
ibrary on [02/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 15

annotation and for understanding genotype-phenotype relationships.

For example, large-scale multi-omic profiling addressed hundreds of

mitochondrial knock-outs in HAP1 cell lines [148] as well as yeast

[149] to functionally annotate mitochondrial proteins as well as for

the understanding of mitochondrial dysfunctions [148, 149]. A further

resource for inferring protein functions was generated by measuring

protein abundances as well as thermal stability in response to 121

genetic perturbations in E. coli. Among others, this dataset explains

growth phenotypes and demonstrates how functionally related pro-

teins are coregulated across genetic perturbations [150]. Our lab

measured proteomes for the Saccharomyces cerevisiae protein kinase

knock-outs andused this data to generate amachine learning approach

to predict the metabolome. We demonstrated the application of

machine-learning approaches to describe the complex multifactorial

relationships of enzymes and metabolites [74]. More recently, we

measured proteome profiles for ∼4500 knock-out yeast strains and

created, to our knowledge, one of the largest and most system-

atic proteomic datasets with almost nine million measured protein

quantities. Moreover, this study has revealed a key advantage of com-

bining genetic perturbation experiments with proteomics.While many

essential proteins cannot be deleted, they encode for high abundant

proteins readily detected by proteomics. Vice versa, many low abun-

dant proteins that are difficult to be detected by proteomics, can be

efficiently deleted genetically. Hence, combining functional genomics

with proteomics provides complementary information with increased

genome-wide coverage [18].

Systematic conditional screens have been applied to animal mod-

els as well. For example, proteome, transcriptome, and metabolome of

386 mice was measured under various environmental conditions and

an integrative analysis showed how large-scale proteomics comple-

ments the other omics layers in explaining the variation of metabolic

phenotypes [151].

Proteins are targets of most drugs and various proteomics and

chemoproteomics methods are increasingly used for preclinical drug

discovery [152, 153]. HT discovery proteomics is particularly promis-

ing as a screening tool for the systematic and simultaneous analysis

of cellular drug responses. It has been shown that drugs with similar

mechanisms of action cluster together, identifying targets and off-

target effects and identifying resistance [78, 154, 155]. For example,

this approach discovered mitochondrial function and autophagy mod-

ulation by kinase inhibitors by measuring 53 compounds in 5 cell lines

[154]. Such proteomics screens can hence combine the advantages of

target based and phenotypic drug screens.With proteomics increasing

in speed and decreasing in price, systematic proteomics screens have

thus the potential to provide unique and comprehensive readouts in

early-stage drug discovery.

One major factor required to functionalize the human genome is

an understanding of the association of genetic variation and protein

abundances. Linking large scale proteomics with genomics has enabled

the identification of genetic loci and alleles that are associated with

changes of protein levels (protein quantitative trait loci, pQTL) [8, 156,

157].Whereas genomic quantitative trait loci (QTL) simply link genetic

variants with phenotypes and diseases, pQTLs enable insights into the

molecular mechanisms underpinning these associations, for example,

by pinpointing the affected proteins and disentangling effects on pro-

tein dosage from protein structure [158]. Partly due to their accessibil-

ity, the analysis of human biofluids such as plasma have proven promis-

ing, for example, yielding a comprehensiveplasmaproteo-genomicmap

of human health and disease [156, 159, 160]. Knowledge that a genetic

variant links to a disease, and is associated with changing protein lev-

els is particularly valuable to establish target-indication pairs, and thus

for the mining of drug targets [161]. In addition to biofluids, a range of

cell lines and tissues have been characterized usingHT proteomics. For

instance, based on a large panel of lymphoblastoid cell lines, it could be

established how genetically encoded protein abundance changes vary

from individuals to populations [8]. More recently in a genome-wide

study on 287 human liver samples discovered hundreds of local (cis)

and distant (trans) pQTLs that drive protein abundance changes, many

of which were not detected in the transcriptome [162].

15 CONCLUSION AND OUTLOOK

There are several equally important reasons why the next genera-

tion of biological and medical studies produce increasing numbers

of samples. Fast chromatography, new acquisition schemes, software,

and adapted sample preparation have started an era of functional

biological experiments that include large sample numbers. However,

reproducibility and robustness are still bottlenecks in proteomics tech-

nologies. Beside a need to increase the standardization in sample

preparation and acquisition, batch effects remain a major challenge in

large-scale experiments. DIAmethods are particularly powerful for HT

experiments, but they are so far largely limited to relative quantifica-

tion experiments using label-free approaches. Relative quantification

generates challenges in large dataset that can contain complex, non-

linear batch effects, and limits the inter-study comparability of pro-

teomic datasets. Thus, there is a need for new quantitative approaches

and strategies for enabling absolute quantification within the DIA

framework.

In recent years several non-MS based HT proteomics technolo-

gies have created excitement in the biomedical research community.

While some of those technologies achieve exceptional proteomics

depth [19–21], their specificities are contradictingwith partially poorly

correlating targets between technologies, and quantify a limited num-

ber of epitopes per protein [21, 163]. Comprehensive validations of

these technologies are still lacking, and MS based proteomics remains

the gold-standard method that directly detects proteins/peptides and

is universally applicable to many sample types and all (sequenced)

species. Further, MS-based proteomics is not dependent on antibody

specificity and allows the detection of post-translational modifica-

tions (PTMs) and peptide level information [1]. As MS instrument

scan speeds and chromatographic efficiencies are expected to further

increase in the future, measurements will constantly become faster,

cheaper, and more comprehensive. MS-based proteomics could hence

become pivotal in tackling some of the major challenges faced by

current biological research.
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