102 research outputs found

    On One Class of Dual Problems of Mechanics of Deformable Solids

    Get PDF
    Inelastic body's plane deformation is described by two vector fields: vector stress potential (gradient of Airy stress function) and vector displacement field. Conditions for possibility of proceeding to the dual problem, when variables change the roles, are described: stress potential is interpreted as displacement field and vice versa. Both a perfectly plastic body model and its dual model of perfectly solidifying matter are considered

    The Mutual Effect of Reciprocally Moving Geokhod and Geological Environment Studied by the Discrete Element Method in Software PFC3D 5.00

    Get PDF
    A numerical experiment procedure of geokhod traverse in the geological environment, based on software PFC3D 5.00 is presented in the paper; the interpretation of numerical experiment results is provided

    REGULATION OF PERIPHERAL B-LYMPHOCYTE DIFFERENTIATION IN RECURRENT MISCARRIAGE

    Get PDF
    The important role of immune disorders in recurrent miscarriage has been proven. Clarification of the character of B-lymphocyte differentiation and its regulation factors in women with threatened miscarriage and recurrent miscarriage in history is an urgent problem, since it will reveal the immune mechanisms of the pathogenesis of this pathology. Purpose: to establish the features of B-lymphocyte differentiation and factors of its regulation in women with a history of recurrent miscarriage and threatening spontaneous miscarriage at the time of examination.Were examined pregnant women aged 18-40 years at a gestation period of 5-12 weeks. The main group consisted of 60 pregnant women with a threatening spontaneous miscarriage at the time of examination and a history of recurrent miscarriage. As a control, 35 pregnant women with uncomplicated pregnancy were examined. The comparison group consisted of 25 primary pregnant women with threatened spontaneous miscarriage at the time of examination. The material for the study was peripheral venous blood. Subpopulations of B-lymphocytes CD19+, CD19+ IgD+, CD20+IgM+, CD20+IgG+ were determined by flow cytometry; CD19+CD20- CD38+, CD19+CD27- , CD19+CD27+. Serum levels of BAFF and APRIL were assessed by enzyme-linked immunosorbent assay.In the main group, an increase in the proportion of B-cells, CD20+IgM+-lymphocytes and memory cells was recorded in the peripheral blood, along with a decrease in the level of naive cells and plasma cells. In the comparison group, an increase in the proportion of immature IgM+B-cells, circulating memory cells, along with a decrease in naive B-lymphocytes, was registered. in the main group there was a pronounced decrease in the serum BAFF level compared with the control and comparison groups. Analysis of the APRIL content showed a pronounced downward trend in groups with threatened miscarriage relative to healthy pregnant women. Thus, threatening habitual and sporadic miscarriages were associated with a shift in the differentiation of B-lymphocytes towards immature forms and a lack of regulatory influence of BAFF and APRIL, which is reflected in the disruption of B-cell homeostasis and weakening of humoral effector mechanisms at the systemic level. The revealed changes may indicate a single mechanism for the development of a threatening spontaneous miscarriage, the severity of which increases with repeated loss of pregnancy. These changes can lead to an increase in effector cytotoxic mechanisms and an increase in proinflammatory cytokines, which can lead to the development of damaging reactions in the fetoplacental complex, which can be reflected in the clinical picture of the threat of termination of pregnancy

    Comparison of hypofractionation and standard fractionation for post-prostatectomy salvage radiotherapy in patients with persistent PSA: single institution experience

    Get PDF
    Background: Hypofractionated post-prostatectomy radiotherapy is emerging practice, however with no randomized evidence so far to support it’s use. Additionally, patients with persistent PSA after prostatectomy may have aggressive disease and respond less well on standard salvage treatment. Herein we report outcomes for conventionally fractionated (CFR) and hypofractionated radiotherapy (HFR) in patients with persistent postprostatectomy PSA who received salvage radiotherapy to prostate bed. Methods: Single institution retrospective chart review was performed after Institutional Review Board approval. Between May 2012 and December 2016, 147 patients received salvage postprostatectomy radiotherapy. PSA failure-free and metastasis-free survival were calculated using Kaplan–Meier method. Cox regression analysis was performed to test association of fractionation regimen and other clinical factors with treatment outcomes. Early and late toxicity was assessed using Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. Results: Sixty-nine patients who had persistent PSA (≥ 0.1 ng/mL) after prostatectomy were identified. Median follow-up was 67 months (95% CI 58–106 months, range, 8–106 months). Thirty-six patients (52.2%) received CFR, 66 Gy in 33 fractions, 2 Gy per fraction, and 33 patients (47.8%) received HFR, 52.5 Gy in 20 fractions, 2.63 Gy per fraction. Forty-seven (68%) patients received androgen deprivation therapy (ADT). 5-year PSA failure- and metastasis-free survival rate was 56.9% and 76.9%, respectively. Thirty patients (43%) experienced biochemical failure after salvage radiotherapy and 16 patients (23%) experienced metastatic relapse. Nine patients (13%) developed metastatic castration-resistant disease and died of advanced prostate cancer. Median PSA failure-free survival was 72 months (95% CI; 41–72 months), while median metastasis-free survival was not reached. Patients in HFR group were more likely to experience shorter PSA failure-free survival when compared to CFR group (HR 2.2; 95% CI 1.0–4.6, p = 0.04). On univariate analysis, factors significantly associated with PSA failure-free survival were radiotherapy schedule (CFR vs HFR, HR 2.2, 95% CI 1.0–4.6, p = 0.04), first postoperative PSA (HR 1.02, 95% CI 1.0–1.04, p = 0.03), and concomitant ADT (HR 3.3, 95% CI 1.2–8.6, p = 0.02). On multivariate analysis, factors significantly associated with PSA failure-free survival were radiotherapy schedule (HR 3.04, 95% CI 1.37–6.74, p = 0.006) and concomitant ADT (HR 4.41, 95% CI 1.6–12.12, p = 0.004). On univariate analysis, factors significantly associated with metastasis-free survival were the first postoperative PSA (HR 1.07, 95% CI 1.03–1.12, p = 0.002), seminal vesicle involvement (HR 3.48, 95% CI 1.26–9.6,p = 0.02), extracapsular extension (HR 7.02, 95% CI 1.96–25.07, p = 0.003), and surgical margin status (HR 2.86, 95% CI 1.03–7.97, p = 0.04). The first postoperative PSA (HR 1.04, 95% CI 1.00–1.08, p = 0.02) and extracapsular extension (HR 4.24, 95% CI 1.08–16.55, p = 0.04) remained significantly associated with metastasis-free survival on multivariate analysis. Three patients in CFR arm (8%) experienced late genitourinary grade 3 toxicity. Conclusions: In our experience, commonly used hypofractionated radiotherapy regimen was associated with lower biochemical control compared to standard fractionation in patients with persistent PSA receiving salvage radiotherapy. Reason for this might be lower biological dose in HFR compared to CFR group. However, this observation is limited due to baseline imbalances in ADT use, ADT duration and Grade Group distribution between two radiotherapy cohorts. In patients with persistent PSA post-prostatectomy, the first postoperative PSA is an independent risk factor for treatment failure. Additional studies are needed to corroborate our observations

    Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy

    Get PDF
    Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata. Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola. We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production

    Deletion of the BDNF Truncated Receptor TrkB.T1 Delays Disease Onset in a Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1G93A ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders

    Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a ‘ceiling effect’ of an already heightened basal levels of hippocampal neurogenesis and BDNF expression

    Purinergic modulation of microglial cell activation

    Get PDF
    Microglial cells are resident macrophages in the brain and their activation is an important part of the brain immune response and the pathology of the major CNS diseases. Microglial activation is triggered by pathological signals and is characterized by morphological changes, proliferation, phagocytosis and the secretion of various cytokines and inflammatory mediators, which could be both destructive and protective for the nervous tissue. Purines are one of the most important mediators which regulate different aspects of microglial function. They could be released to the extracellular space from neurons, astrocytes and from the microglia itself, upon physiological neuronal activity and in response to pathological stimuli and cellular damage. Microglial activation is regulated by various subtypes of nucleotide (P2X, P2Y) and adenosine (A1, A2A and A3) receptors, which control ionic conductances, membrane potential, gene transcription, the production of inflammatory mediators and cell survival. Among them, the role of P2X7 receptors is especially well delineated, but P2X4, various P2Y, A1, A2A and A3 receptors also powerfully participate in the microglial response. The pathological role of microglial purine receptors has also been demonstrated in disease models; e.g., in ischemia, sclerosis multiplex and neuropathic pain. Due to their upregulation and selective activation under pathological conditions, they provide new avenues in the treatment of neurodegenerative and neuroinflammatory illnesses
    corecore